
Project Title: Intent Based Duplicate Question Removal  

 

Team Number: 14  

Team Members:  

Nikitha Rao (01FB15ECS364)  

Rahul Ragesh (01FB15EEC303)  

 

 

Abstract:  

Quora, a well known social media platform, allows people from all around the world to ask 

questions and enables them to connect with various domain experts who provide quality 

answers and several new insights. With over 100 million people visiting Quora every month, 

the user base is humungous. It is not difficult to inference that several people may end us 

asking similarly worded questions. When there are multiple questions being asked with the 

same intent, a reader would have to spend more time in order to find the most suitable 

answer to their question. At the same time a writer may feel that they are answering 

multiple versions of the same question which may seem like a waste of time. This in turn 

leads us to our problem. Given any two questions, identify whether they have the same 

intent i.e. is one question a duplicate of the other or not. We will be using the dataset 

provided by Quora for the same. However, we aim to generalise our approach to be able to 

tackle the problem for any Question - Answer Forum, such as Quora itself or Stack Overflow. 

 

Libraries Used: 

* numpy  

* Tensorflow 

* Keras  

* scikit-learn  

* h5py 

* hdf5  

 

 

 



Dataset Used: 

Quora Question Pairs: 

Link - https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs 

There are over 400,000 lines of potential question duplicate pairs. Each line contains IDs for 

each question in the pair, the full text for each question, and a binary value that indicates 

whether the line truly contains a duplicate pair. 

 

 

GloVe: Global Vectors for Word Representation 

 

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. 

Training is performed on aggregated global word-word co-occurrence statistics from a 

corpus, and the resulting representations showcase interesting linear substructures of the 

word vector space. 

 

 

 

 

 



Project Files and their Descriptions: 

main.py – The main function. Calls the rest of the functions in the order of the files 

mentioned below. 

get_dataset.py – The preprocessing function. It checks if the dataset(Quora Questions) is 

present, if not it downloads the necessary data from the links specified. The downloaded 

data is extracted, tokenized and encodes it. We then check if the GloVe data is present and 

download it if not. This has information about the word embeddings. Using the GloVe 

embeddings we create a new embedding matrix to denote the word similarity for all the 

words present in the Quora dataset. This is followed by saving the preprocessed data in the 

form of files – q1_train.npy, q2_train.npy, label_train.npy, word_embedding_matrix.npy.   

model_def.py -  The preprocessed data is split in the form of test data and training data 

(1:9) ratio. We then define the model architecture for the feature extraction and 

classification problem. Hyper parameters are tuned and the various layers are defined in the 

neural network. The output is in the form of 0 or 1 representing true or false depending on 

whether the two questions are convey the same intent or not. The loss function used is 

binary cross-entropy. 

training.py – Trains the model based on the training data for 50 epochs. After each epoch, 

there is an early stopping criteria through cross validation is used. The weights for the epoch 

having the best validation accuracy  is saved in a file. 

testing.py – The model is tested by using the test data. 

 

Instructions to run: 

python3 main.py 

 

Control Flow of the Program: 

1. Pre-process the Dataset 

2. Extract relevant information from the dataset. 

3. Tokenize all the questions. 

4. Encode text to sequence. 

5. Generate word embedding matrix using Stanford GLoVe model. 

6. Split the dataset into training, test and validation set. 

7. Build the network model as per the given architecture. 

8. Adam optimizer with Binary Cross Entropy Loss function was employed. 

9. Save the configuration files. 

10. Train the model. 

11. Model evaluation is done to generate cross validation accuracy. 

 



 

Training Time: 

Training takes approximately 300 secs/epoch on an average, using Tensorflow as a backend 

for Keras on an intel core i7 8th gen,  8GB RAM. No GPU used. 

For 50 epocs, 250 mins ~ 4 to 5 hours. 

 

 

 

 

 

 

 

 

Network Architecture: 

 

 



Output: 

 


