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PlayIt: A Pluggable And Interactive Drawing Tool For Technical
Applications

Nikitha Rao, Rutha Prasad, Pallavi M.P., Nithin Bodanapu, Reshma Bhat, N.S. Kumar,
PES University

Bangalore, Karnataka, India

ABSTRACT
Diagrams and visualizations are predominantly used to convey con-
cepts and ideas, especially in a classroom setting. While there are
several online tools available that facilitate construction of tech-
nical diagrams, there is no single universal tool that allows users
to both draw and interact (evaluation of a circuit) with a given di-
agram that spans over multiple areas of interest (or domains). In
our paper, we propose novel techniques that can be incorporated
into drawing tools that allow an expert user to plug-in their do-
main of interest by writing a domain specific script. By doing so, we
give flexibility to the expert to add additional features and domains
without having to make changes to the tool. The tool can be used
for drawing technical diagrams, analyzing them and evaluating
them based on rules, in the form of predefined functions, provided
by the expert user. We also introduce the concept of using formal
representations for diagrams rather than storing them as images,
thereby making it easier to analyze and manipulate. Additionally,
we allow the user to import diagrams drawn on other platforms
and interact with them. As a proof of concept, we developed a web-
based drawing tool called PlayIt which supports the domains digital
logic circuit design, finite state automaton and basic geometry. The
tool’s architectural design caters to the limited programming expe-
rience of non-computer science major students and teachers. We
also present several applications of the tool in aiding the teaching-
learning experience such as automated evaluation of assessments,
bringing the focus on understanding concepts rather than function-
ing of multiple tools etc. A user study supported our claims with
several positive responses from both students and teachers.

KEYWORDS
drawing tool, interactivity, web, plugin, education, automated as-
sessment, teaching aid
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1 INTRODUCTION
Diagrams have always been a primary choice of visual aid to sim-
plify complex ideas. While there are several tools available that
help facilitate construction of such diagrams, there is no single uni-
versal tool that spans over multiple domains (areas of interests)
that may be relevant to a user, especially for students. In addition
to this, when it comes to technical diagrams, there may be several
ways in which a user may want to interact with the diagram, for
example - evaluating a logic circuit given some inputs. It is not un-
common for users to want to analyze the diagrams and evaluate
them. While there are some tools which allow these interactions,
they are restricted to a specific domain and offer a selected set of
interactive functions.

Driven by the need for such a extensible tool that is flexible
enough to meet the varying needs of different users and domains,
we designed a web-based drawing tool for technical applications.
As the title suggests, PlayIt is a tool that can be plugged in with any
domain and configured to meet the needs of a given user without
making any changes to the tool itself, thus supporting extensibility.
It also brings the diagrams to life and allow users to interact and
"play" with it ( design details discussed in Section 4). This gives all
expert users (teachers or users who have extensive knowledge in
the domain area) the choice to add any domain to the tool and make
it available to other users. This is achieved by allowing the expert
user to add in their domain-specific scripts, which can be started
off from our basic script template, directly into the tool (discussed
in depth in Section 5).

As mentioned earlier, just drawing a diagram may not always be
enough. Taking this into consideration, we let the domain expert
users decide what interactions they think is useful and relevant to
the domain of interest. The domain-expert users are given flexi-
bility to decide on the interactivity required for their target users.
The interactions can be as simple or complex as they desire. This
is especially useful when teachers want to control what interac-
tions and functions should be available to students when they are
required to create the figure and interact with it relevant to some
concept being taught.

One way to evaluate the correctness of diagrams in a test setting
could be to use image processing techniques. This is not only ex-
tremely complex, but also very dependent (on a domain) and unreli-
able. To help solve this problem, we introduce the concept of using
formal representations for diagrams. This also makes evaluation
easier as each interaction is now the result of predefined functions
that manipulate the diagram’s representation rather than the dia-
gram itself. We have defined the formal representation used to store
the figures in Section 3. This representation can be transformed if
required by the expert user. The expert of the domain also defines
the functions thus allowing the interactions to be more robust and
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Figure 1: A drawable image, a deterministic finite state au-
tomaton that accepts even binary numbers

- state1 state2
state1 1 0
state2 1 0

Table 1: The corresponding formal representation of the
DFA in Figure 1 would be a transition table. The start state
being state1 and state2 being the final state.

accurate. Figure 1 is an example diagram of a deterministic finite
state automaton which accepts even binary strings. The formal rep-
resentation for the same can be transformed to a transition table.
Table 1 shows the transition table for Figure 1. Using this formal
representation in place of images helps us overcome several chal-
lenges that arise in image processing and makes the system invari-
ant to scale and rotation, which are difficult to tackle using tradi-
tional image processing. In addition to this, image processing tech-
niques are more prone to errors and are not very robust. Though
using machine learning or deep learning can help overcome some
of those problems, it may be harder to get the desired accuracy in
analyzing and evaluating diagrams. This is important as we target
automatic evaluation of answers as an application for the tool.

We have also provided a mechanism to allow users to load their
diagrams that may be stored in XML or other non-image formats
from other tools. From a student’s (naive user’s) perspective, the
user can load their diagram and interact with the diagram based
on the interactions provided by the tool. From a teacher’s (expert
user’s) perspective, there may be certain functions that they’d want
to carry out which other tools may not provide. The teacher can
simply add that functionality to the tool, demonstrate the same and
make it available to the students to use. We have demonstrated the
same by using JFLAP [12]. Despite this being a one way connection
for now, it can easily bemade twoway by allowing other tools to call
functions on the tool and displaying the results obtained on their
platform.

The key technical contributions made in our paper is as follows:

• Extensibility: The tool can be augmented with any domain
of interest making it programmable and generic.

• Interactivity: We introduce the concept of using formal rep-
resentations for diagrams instead of storing them as images.
This enables users to interact with the diagram in various
ways.

• Pluggable: The domains and operations added are essentially
plug-ins as they can add functionality to the tool without
making any changes to the tool itself.

• Services: A user can import and interact with diagrams from
other tools. The operation functions themselves act as APIs
as other tools can effectively make use of the interactions
that are defined in the tool.

• PlayIt: Tool developed to demonstrate all the ideas presented
in our paper. As a proof of concept, three domains, namely,
digital logic circuit design, finite state automaton and basic
geometry were added to the tool. Several interactive func-
tions were also added to each one of the three domains.

The organisation of the remainder of the paper is as follows: Sec-
tion 2 identifies the limitations with various other tools that are cur-
rently available. The formal representation that is used to store the
diagrams is described in Section 3. The overall design of PlayIt, the
tool developed by us and the implementation details are enclosed
in Section 4. Section 5 enlists the algorithms for extending the tool
with different features. This is to emphasise on the simplicity of
the whole process. The current domains and interactive features
that were added to the tool as proof of concept have been enlisted
in Section 6. This is immediately followed by the evaluation of the
tool in Section 7. We conclude with Section 8 and 9 which give a
brief overview of the applications and the future work respectively.

2 RELATEDWORK
To the best of our knowledge, current education platforms do not
support extensibility by offering adaptation of customized code
modules. Analyzing and supporting alien functionalities requires
architectural diagnosis and interfacing, which are heavy design im-
plementations. For education in particular, tools have been used
in training specific courses only, restraining the involvement of in-
structors and students in customizing their own work flows and
automated assessments. Studying existing works helped design the
analytical framework that uses abstract interpretation to allow in-
structors to scale and students to learn in multi-domain training.

Pre-Packaged libraries of multiple domains with no as-
sessment support - Training tools, in our use case, graphic train-
ing tools, are generic to drafting and layouts in multiple domains
in order to improve the resource-fullness and speed of creation of
standard graphic elements [8][15]. Main aim being to displace man-
ual technical drawing, and have common utilization as the main
tool in computer-aided drawing, drafting and design like Draw.IO
[7], Vectr [19]. With no ability to interact with or analyze the dia-
grams. Analytical platforms would require understanding new user
input [18] and customizing output behaviour accordingly.

Trade off between offering zero customizability but high
specific functionality -Certain tools having fixed their functional
context to a small domain, can provide it’s extensive simulated
functionalities. Proving to be very powerful in their respective do-
mains, the architectures are not built to be extendable. Domain-
specific tools, Automaton Simulator [3] and JFLAP [12] dedicated
to finite automate courses offer complex pre-packaged function-
alities which limit the tool to a specific domain. Deciding on the
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trade-off between specificity and generic modules helps design syn-
thetic architectures. Studies on the need to ease-in students into
new development environments [6] where they can find familiar
functionalities as taught during the course indicate the need for
adapting functionalities based on user feedback.

Offering adaptation of only low complexity alien code -
As an objective to allow custom interactions on diagrams, some
solutions allow adding functionality externally, but are required
to keep the functions rudimentary and specific to fit the back-
end code structures that they run on [11]. Adobe Illustrator [1]
is known to have a C plugin that can be used to develop custom
simple functionalities. To allow instructors to add in their own
customized assessments would only require mastering of formal
verification techniques and implementing generic checkers which
already fall under their expertise. Combining the approaches to
deriving infomatics from user data [2][17] and thus automating
assessment [10][9][16] from it would be the resulting step.

3 FORMAL REPRESENTATION
One of the primary contributions of the paper is the use of formal
representation to store the drafted figures which in turn facilitates
interactivity and extensibility of the tool. Before we get into the
formal representation, here is a brief description of some important
terms that are used throughout the paper.

• Domain - It refers to a given subject or the area of interest.
• Components - The different shapes which belong to a given
domain and have some meaning in the domain. For example,
states in an automata or gates in a logic circuit.

• Lines - Different components are connected to each other
using lines.

• Connectivity - The connectivity between components is
governed by the lines. Two components are said to be con-
nected if a line is present between them. A component is said
to connected to itself if a line references the same component.

Note - Every single component and line have various other prop-
erties such as label assigned, value, positional co-ordinates etc.

The formal notation of a given figure is defined as follows - A
given figure F can be represented as a three-valued tuple

F = (C, L, δ ) (1)

where C is the component set, L is the line set and δ represents the
connectivity.

A component c ∈ C is said to be connected to another component
c ′ ∈ C if there exists a line l ∈ L between c and c ′.

The connectivity δ is defined as δ : C × L −→ C such that
if c and c ′ are connected by a line l then δ (c, l) = c ′. Similarly,
the representation for a component connected to itself would be
δ (c, l) = c . This is internally stored as a | C | × | C | matrix where
the cells in the matrix has a value l ∈ L if there is line connecting
the components.

Every single figure that is drawn on the tool is internally stored
as it’s formal representation. This representation is either used as
it is or is transformed into a suitable representation that is domain
specific. For example, this representation is used as it is in Logic
Design Circuits whereas it is transformed into a transition table in

Figure 2: High-level architectural design of the tool

the case of Finite State Automaton. The various functions which
are written to operate on the figure to make it interactive, manipu-
late this formal representation rather than the figure itself. We have
implemented the domains Logic Design Circuit, Finite State Au-
tomaton and Geometry which are very different from one another
as part of our proof of concept (discussed in Section 6) to show that
this formal representation generalizes to several domains which
can be extremely diverse in nature.

4 PLAYIT - OVERALL DESIGN
The overall design of our tool is broadly comprised of four com-
ponents; the user interface, the scripting that supports the user in-
terface, a server, and the back-end comprising of domain specific
structures. This modularity and loose coupling was maintained
throughout the high-level and low-level design such that any com-
ponent can be plugged into another software environment and of-
fer its core functionality coherently. The high-level architectural
design of the same can be seen in Figure 2.

4.1 User Interface Design
Initially inspired by Microsoft Paint, the UI mimics the intuitive
template of a white drawing canvas and its supporting toolbars. The
toolbar in the header supports standard options such as using the
line tool, the eraser, object selectors, color palletes and textboxes.
As the back-end server supports sessioning, we allow signing in and
signing out along with dedicated storage for each user. A tab menu
on the left container holds our four tabs - General File Options,
Domain Shapes, Domain Functions, and Shape Configuration. The
file options support standard operations such as opening, updating
and saving in multiple graphic formats. Depending on the chosen
domain, the domain shapes hold relevant figures and drawable
shapes that are displayed for the user to drag and drop onto the
canvas and build their own complex structures. Figure 3 shows the
various domain shapes that are a part of logic design. The domain
functions display all the executable functions that can be run on
the final structure present on the canvas. The shape configuring
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Figure 3: The domain shapes tab for logic design

tab contains the updatable configurations for each shape on the
canvas, allowing a user to experiment with the structure’s attributes
dynamically. Figure 4 shows the file options and configurations tab.
Apart from the tab menu, the right container holds the main canvas
which renders all graphics and is resizable upto seventy percent for
responsive browser sizing.

Figure 4: The file options and configurations tabs.

The UI design is aimed to be as minimalistic and user-friendly
alongwith providing extensive functionalities. Following theModel-
View-Controller (MVC) architectural pattern for designing the
whole front-end display, we use basic HTML5, Bootstrap and An-
gularJS 2.0. Bootstrap helps cut-down on styling specifics and pro-
vides additional javascript extensions. AngularJS incorporates the

Figure 5: An example logic design circuit drawn on the tool.

Model-View-View-Controller (MVVM) model into the user inter-
face andmainly supports the high dynamic nature of the canvas and
user activity. The event handlers are mainly written in Javascript
and JQuery. Event handlers for drag and drop, toolbar selections
and graphic related functions are scripted in Javascript and talked
about in the next section. Our choice of technologies was based
on checking support for all browsers and changing versions, and
having fallback patterns to support all internet speeds.

4.2 Graphic Rendering
Many popular libraries exist that offer state-of-the-art rendering
functionalities and our tool works with Fabric.JS[20]. On launching
the canvas, using the drag and drop handles for each shape, users
can interact with the canvas and the shapes can be resized and
moved anywhere on the canvas. Fabric also offers coding in custom
shapes such as straight lines and curved lines which are needed to
add connectivity between shapes to create complex group struc-
tures. We also handle the movement of lines [14] as we move the
objects in the canvas, thus keeping connectivity intact within the
shapes rendered. All coordinates are relative, thus allowing respon-
sive UI layouts. As the user sets the configurations for each shape
on the canvas, the Javascript event handlers use temporary tables
that store the state of each shape and the whole diagram, along
with custom properties for each diagram. Figure 5 is an example of
a logic design circuit that was drawn on EasyDraw. Fabric allows
converting the whole canvas into a JSON representation which
holds information about each component rendered on the canvas
along with the tables we use to track rendered shapes. These JSON
strings can be used to save and re-render the whole composition
and are the basis of our open and save file operations. These JSON
representational formats also aid in easy exchange of data with the
python back-end. They can also easily be converted into objects,
thus aiding in processing [4].

4.3 Server Scripting
Since most of our core functionalities are in graphic rendering and
back-end processing, our server remains simple. We chose Flask,
a python micro-framework to build the server. Since the server

4
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is minimal in functionality and does not require heavy security
and standardized structures, we chose Flask instead of Django.
Our server is simply a RestAPI webservice which receives calls
from Angular in the front-end and sends them to the Python back-
end for domain-specific processing, fetches back the response and
sends it back to Angular. The main flow of the server begins by
hosting the whole UI on start up. When a user logs in, a Flask
session is maintained, which captures the domain chosen, previous
work history, saved files and reloads all custom settings. When
the user chooses a particular domain, a web request is triggered
to fetch all related code-files (back-end scripts, library files, expert
functions, and domain-specific shapes), and is loaded into the user
interface. As the back-end functionalities are bound to the URLs
generated by the server, the UI(angular) can call these API methods
as get/post calls from triggered UI event handlers. When the user
wants to save their work, or run an evaluation on it, the encoded
JSON data prepared by the user interface scripts are sent to the
server. The processing requests and responses are exchanged using
JSON. We keep this JSON communication as a standard as it helps
the server communicate with external software tools (discussed
below in Section 5.3: Adding diagrams from another tool under
Results). Exception handling and debugging are implicit functions
offered in flask and Angular. Design patterns for periodic fetching
to aid network traffic in multi-session environments and server-
side events are implemented implicitly by the frameworks and are
incorporated in our server design.

4.4 Back-end Domain Design
The back-end’s core functionality is to use the structural composi-
tion of the graphics rendered in the front end and convert it into a
collection of objects on which functions can be executed. The en-
tire implementation of the back-end, which is coded in python, can
be broadly divided into two categories, a generic interface and the
domain specific structures. The structural composition and flow for
a domain in the back-end can be better understood from Figure 6.
For proof of concept we have developed the domains logic design,
finite state automaton and basic geometry.

Integration with the front-end - A configuration file having the
details of the functions offered by a domain along with a prompt
for what the function does is used by the tool to make the domain
specific interactions available to the users. An integrator module is
used to link the back-end to the front-end of the tool. The integra-
tor is responsible for creating the domain specific objects and call-
ing the respective functions. The server passes the function name
and arguments list along with the domain object to the integrator
which then calls the function and returns the result to the server in
the form of a JSON string. Thus the back-end communicates only
with the Flask server, and so can be plugged into other coding en-
vironments as a fully functional library on its own.

Basic Interface - A basic interface class provides the base imple-
mentation that any domain must implement. A constructor func-
tion of the basic interface implements the creation of the figure
object which comprises of the components, lines and the connec-
tivity details. The UI scripting component of the tool is responsible

Figure 6: Back-end design: The structural composition and
flow for a domain in the back-end

for providing all the necessary details that need to be stored by the
back-end. These details are used for creating the necessary elements
that are responsible for representing a figure (type of the shape, co-
ordinates of the shape on the canvas, the rotational angle, labels and
associated configured user inputs). A component class is used as the
base interface that each component must implement. The construc-
tor function of the component class initializes all the attributes for
each component as provided by the user interface. A line class is
used as the base interface that each line in the figure must comprise.
A constructor function of the line class initializes all the attributes
for each line as provided by the user interface. The connectivity
is given in the form of an adjacency matrix and denotes the rela-
tionships between the various components and the lines that link
two components. There are additional utilities provided to save the
figure, reload a figure and for parsing the JSON being exchanged.

Domain specific details - The domain class inherits the basic in-
terface class and builds on it. The constructor function initializes
the figure object whose properties include the components, the
lines and the connectivity. The components are objects of the com-
ponent class. The lines are objects of the lines class. The connec-
tivity is represented in the form of an adjacency matrix providing
details about the connected components and the line that connects
two components as the default implementation. However, this can
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be modified to suit the domain of interest. For example, for finite
state automaton, a transition table can be used as it provides details
about the states, the input alphabets and the corresponding state it
transitions to for a given input alphabet. In domains like geometry,
where there is no implicit graph like structure, the connectivity in-
formation is ignored and only the lines information is manipulated.
Functions can be added to interact with this figure object and the
results are returned to the server as JSON strings.

XML parser - As discussed below in section 5.3, Adding diagrams
from another tool under Results, an explicit parser needs to be built
to convert the diagrams representation, we used the XML repre-
sentation from JFLAP [12], into the format that the tool expects.
This includes information about the components, lines and the con-
nectivity between the various components. We make use of the
XML.etree.ElementTree module in python to parse the XML repre-
sentation and then create the structures necessary for the tool to
render the diagram. They are then transformed into the representa-
tion that is suitable for all back-end operations.

Figure 7: Use Case Diagram: The various possible interac-
tions of an expert and a naive user with the tool

5 EXTENSIBILITY
One of the primary goals was the extensibilty of the tool. Figure 7
shows the various interactions the users can have with the tool. It
also shows the different ways in which the expert user can extend
the tool by adding various domains and interactive functions. To
demonstrate the simplicity in extension of the tool, we provide the

high-level algorithms explaining all the steps required for an expert
user to add the necessary features.

5.1 Adding a new domain to the tool
To add a new domain to the tool, we first need to add all the neces-
sary images that are meant to be a part of the domain in a specific
folder. The user is also required to make a configuration file stating
all the functions the domain provides. An integrator file is respon-
sible for all the function calls that are made to the back-end. The
user is required to append to this file to ensure that the arguments
are parsed correctly and the function call is made. The returned
value is then sent back to the UI via the Flask interface.

As mentioned earlier, the loose coupling of the UI and back-
end helps maintain the same user experience, irrespective of what
domain is being added. The new shapes are added dynamically into
the shapes tab, and the new functions into the execution tab, thus
maintaining the same flow of activity for all the users.

Following this, the user now has to handle saving and reloading
of the diagrams. The UI passes three forms of tables - the compo-
nents, the lines, and the connectivity between the components. The
user is responsible to parse these tables into a structure suitable for
the formal representation of diagrams in the domain. For example,
a transition table is maintained for representing a finite automaton.
Once the user has this representation defined, they can perform
necessary interactions with it. They can have a set of predefined
functionality that can now be accessed by the UI. Note that there
can be additional functions added later on as well, as explained in
the section below. We have demonstrated this by implementing the
domains digital logic circuit, finite state automaton and basic ge-
ometry.

5.2 Adding new interactions to an existing
domain

As mentioned above, any changes made to the domain with respect
to the interface needs to be reflected in the configuration file and
the integrator file to ensure that the function is being called cor-
rectly. Apart from this, the user has complete freedom to manipu-
late the given representation and define any interaction on it. Once
defined, the function now becomes available on the UI and can be
accessed by other users. We have demonstrated this by having mul-
tiple functions in each domain. For example, checking if the given
automaton is a deterministic finite state automata or if the given
string belongs to the language. We have functions like evaluating
the circuit and generation of truth table for digital logic circuits.

5.3 Adding diagrams from another tool
In order to load the representation of a diagram (like XML) from
other tools, the user is required to build a parser that converts
the given representation into a form that is acceptable by the tool.
This includes the three structures having information about the
components, lines and connectivity. This can now be passed to an
existing domain so it is transformed into the desired representation
or the user can add a new domain to the tool by following the steps
mentioned above. Similarly, the existing functions can be called or
new functions can be added. The parsed results can be sent back to
the UI to render the diagram on the canvas. To conclude, once the
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representation (from a different tool) is parsed, it can be loaded on
to our tool and various interactions can be performed with it.

We have successfully demonstrated this by carrying out the
stated procedure on JFLAP [12]. A parser was built to parse the
XML representation of diagrams that were originally drawn on
JFLAP and the results were passed to the domain-specific script
corresponding to the finite state automaton domain in the back-
end. The diagram can be rendered back to the UI and the defined
interactions can be performed on the loaded diagram.

5.4 Adding functions for automated evaluation
Additional functions can be added to the tool by a teacher to for-
mulate questions using the same procedure as above. For a given
question, a student user may input their response which can then
be verified by the tool automatically. Instead of returning the result
of a given interaction directly, the teacher can check if the result
matches the students response and automatically evaluate them.

6 RESULTS
Keeping the existing work in mind, we were able to develop PlayIt,
a tool with an extensible architecture for adding new domains with
relevant functions using the proposed solution. We also allow users
to load diagrams that were drawn on other platforms and allow
them to perform the necessary interations with them. We were
successfully able to design the tool while ensuring none of the back-
end is coupled with the tool. This allowed us to easily add and
remove domains by just making changes to the integrator module
and adding domain specific back-end script. Figure 8 demonstrates
the whole UI along with an example finite state automaton that
accepts even binary strings. You can also view the various ways in
which the user can interact with the diagram on the execution tab
on the left side of the canvas.

As a proof of concept, we have successfully extended the tool
with three domains, which are, digital logic circuit design, finite
state automaton and basic geometry. We have also added various
functionality to these domains allowing users to interact with the
diagrams. The domain specific interactions that are added currently
for the respective domains are as follows:

Digital Logic Circuit Design
• Evaluation of the circuit, given inputs.
• Generation of truth table for the given circuit.
• Generation of random inputs for the circuit (useful in exami-
nations where the student has to specify the expected output
by analyzing the behaviour of the circuit for a given input).

• Automatic evaluation of user’s output after evaluating the
circuit based on generated input.

Figure 9 shows the execution tab which comprises of all the
available interactions for the digital logic circuit design domain.

Finite State Automaton
• Check if the given input string is a part of the language
represented by the finite state machine.

• Generates the transition table for the given finite state ma-
chine (the transition table is generated for both determinis-
tic finite automaton as well as non-deterministic finite au-
tomaton).

• Generation of random inputs string using the alphabets of
the language.

• Automatic evaluation of user’s output to whether the given
string belongs to the language.

• Checks if the nature of the given automaton is deterministic
or non-deterministic.

Figure 9: The execution tab with all interactions for Digital
Logic Circuit Design.

Basic Geometry
• Calculate the perimeter and area of the given triangle.
• Calculate the circumcenter of the triangle.
• Calculate the centroid of the triangle.
• Calculate the incenter of the triangle.
• Calculate the orthocenter of the triangle.

Note that these are just some sample functions designed to
demonstrate proof of concept. It is not an exhaustive list of all the
interactions that can be added to a domain.

7 EVALUATION
Previous studies in computer-aided education [13][10][9][17][5]
have suggested that the availability of custom and familiar tool
development environments helps in production of more intuitive
and precisely defined solutions and problems. As mentioned ear-
lier, our previous survey suggested that extending and integrating
new module components was perceived by many users, instructors
and students, as the lacking feature in most training tools. Tools,
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Figure 8: Basic design of the UI. A DFA drawn onto the canvas.

like Adobe and COLDVL, that did offer an adaptation interface ei-
ther required a steep learning curve or allowed rudimentary ad-
ditions. Most of the time, instructors are asked to follow certain
pre-defined steps and procedures to utilize all the features of the
tool. Any creativity they might have is consequently limited, es-
pecially with regard to producing and designing varied problem
statements for the students. The role of graphical tools, in these
scenarios, is not questioned by the teachers, and is looked as only a
range of drawing techniques. The implicit methods supported im-
pose choices on both type of users and thus do not offer an optimal
method to create relevant contexts. In light of the amount of time
teaching-learning processes include usage of computer-aided de-
signing, we found it key to offer the intuitive freedom of a designer
to the users directly. Our user studies reflect experiences of teach-
ers and pupils using this tool in their development framework and
in modelling assignments of their respective training subjects.

We conducted a short presentation which was followed by an
anonymised survey to collect feedback and comments. Below we
summarize the responses we received from the several professors
and students belonging to varying majors in different years of their
undergraduate studies.

Do such interactive visualizations actually help teaching -
learning process?Most participants appreciated the freedom of
designing a system and being able to control it’s functionality dy-
namically. This seemed to enhance their learning experience by
allowing them to observe the outcomes of mistakes in detail and
helping them precisely pick out the solutions. Two instructors men-
tioned that using the tool to show sequential design patterns in
Finite Automata and the incremental outcomes, helped their stu-
dents understand the concept faster than normal, and even encour-
aged students to experiment with their own design and patterns. A
short survey among students showed that majority of the students
preferred the courses to be more interactive and agreed that the vi-
sualizations and graphic tool made the coursework easier to grasp.

A majority of the professors agreed that having visualizations that
they could interact with helped present subject matters using nar-
ratives, which students followed better than blocked learning.

Were you able to represent visuals of a conventionally non-
graphic subject? Seeing how easy it was to flood in visual data and
interactively create multiple drafts of these visual elements, a few
participants confirmed the extensibility of the tool in pure graph-
ics as well. Subjects such as Data Structures, Advanced Algorithm
Design, were adapted and tested, by importing basic 2D shapes
and navigation elements, helped in converting complex data struc-
ture designs into easily explainable visualizations. Three students
managed to represent the reversal and functioning of a Linked List,
which was "very helpful since we could show how the design was
implemented in code simultaneously".

When would you choose this tool over existing solutions?
Several participants agreed that being able to write up and add
in their own functions, related to changing subject requirements
was a fresh feature that the tools that they were using previously
lacked. Few professors expressed their interest in using the tool
for automatic evaluation of assignments and exams. Since each
graphic draft is dumped into a tangible code structure, an automatic
checker would be able to run through the structure and match val-
idation checks set by the instructors. Several instructors also ex-
pressed that such a tool would be able to check for plagiarism to
ensure that students did not copy the solutions. They liked being
able to have multiple domains in the same tool as it saved time and
retained familiarity in usage. Several of them also expressed their
views on lack of existing tools that allowed them to interact with
the diagrams from different domains. They would have to explore
multiple tools which specialize in a particular domain, to find the
most suitable for their use case.

How did you like interacting with the tool? Participants who
used it purely from a users or students perspective found the tool
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simple and intuitive. They seemed to find drawing drafts and using
general functionalities similar to existing tools, although all agreed
for general improvements in the overall polishing of the look and
feel of the tool. Professors and Instructors who were able to add
in their own modules of custom graphic elements and functionali-
ties appreciated the simplicity of the interface template. For partici-
pants who were of non-coding backgrounds, a short introduction
was held to help them add in their use-cases. They later expressed
that they would be able to continue development independently
due to the ease of coding in Python. Students and Teaching Assis-
tants both mentioned that they were able to use the tool to make
their own practice assessments and teaching courses, switching
roles as instructors to understand problems better.

Do you have any concerns regarding the tool? One of the pri-
mary concerns expressed by professors who of non computer sci-
ence backgrounds was the lack of programming experience. But
upon explaining the backend design and showing a demo of how a
new domain can be added to the tool with just the basic knowledge
of python, these concerns were no longer present. Few participants
questioned if the tool would support using other programming lan-
guages apart from Python to write-up their modules and add it into
the tool. This was cleared when we explained the template behav-
ing like a generic API and thus virtually supporting any code base
of any preferred coding language.

Any additional comments Few professors expressed their inter-
est in using such a other domains that they are interest in incorporat-
ing into the tool which varied from electrical engineering, databases
and even differential mathematics. Few students also volunteered
to help the teachers in extending the tool to other domains.

8 APPLICATIONS
One of the most prominent applications for a pluggable web-based
drawing tool such as this is in the domain of education. With online
school and computer-based exams becoming more and more com-
mon among institutions around the world, this tool could be a great
way to help students incorporate diagrams to support their answers.
It also helps teachers by automating the evaluation of such answers.
Since the diagrams are internally stored as formal representations
rather than images, it becomes easier to compare them and evaluate
them without the need for complex image processing tasks. This
makes automated evaluation robust and reliable. The pluggable na-
ture of the tool allows any user who is an expert in a given domain
to add to the tool. Students no longer have to get familiar with dif-
ferent software for various subjects and can use this as an all-in-
one tool serving all their needs for drawing technical diagrams.

9 CONCLUSION AND FUTUREWORK
We have successfully developed PlayIt, a pluggable web-based draw-
ing tool, and tested it by plugging in the domains like logic design,
finite state automaton and basic geometry, each having it’s own
formal representation for the diagrams along with multiple inter-
actions that can be performed on them. This is achieved without
making any changes to the tool itself. The flexibility and freedom

this tool provides the users can be immensely exploited to create
custom functions as per one’s needs and requirements.

In the future, the tool can be extended to several other domains
of the users choice and can be open sourced for other people to
contribute. Image processing can be used to interpret existing im-
ages into the formal representation so different interactions can be
performed on them. Given a parsing tool that can convert any im-
age into a representation that the tool can interpret, we can design
a web plugin to automatically make all diagrams on websites like
Wikipedia interactive so students can not only read about a topic
but can also interact with the figures to understand concepts better.

Currently, expert users are required to write the domain specific
script; however, we are looking at ways in which this can be au-
tomated as well. Given the formal representation and set of rules
describing various functions, we want to design a code generator
that will automatically generate the domain specific script. We also
hope to incorporate this in the computer-based exams that are con-
ducted in the university and use it as a teaching tool in the classes.
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