
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PlayIt: A Pluggable And Interactive Drawing Tool For Technical
Applications

Nikitha Rao, Rutha Prasad, Pallavi M.P., Nithin Bodanapu, Reshma Bhat, N.S. Kumar,
PES University

Bangalore, Karnataka, India

ABSTRACT
Diagrams and visualizations are predominantly used to convey con-
cepts and ideas, especially in a classroom setting. While there are
several online tools available that facilitate construction of tech-
nical diagrams, there is no single universal tool that allows users
to both draw and interact (evaluation of a circuit) with a given di-
agram that spans over multiple areas of interest (or domains). In
our paper, we propose novel techniques that can be incorporated
into drawing tools that allow an expert user to plug-in their do-
main of interest by writing a domain specific script. By doing so, we
give flexibility to the expert to add additional features and domains
without having to make changes to the tool. The tool can be used
for drawing technical diagrams, analyzing them and evaluating
them based on rules, in the form of predefined functions, provided
by the expert user. We also introduce the concept of using formal
representations for diagrams rather than storing them as images,
thereby making it easier to analyze and manipulate. Additionally,
we allow the user to import diagrams drawn on other platforms
and interact with them. As a proof of concept, we developed a web-
based drawing tool called PlayIt which supports the domains digital
logic circuit design, finite state automaton and basic geometry. The
tool’s architectural design caters to the limited programming expe-
rience of non-computer science major students and teachers. We
also present several applications of the tool in aiding the teaching-
learning experience such as automated evaluation of assessments,
bringing the focus on understanding concepts rather than function-
ing of multiple tools etc. A user study supported our claims with
several positive responses from both students and teachers.

KEYWORDS
drawing tool, interactivity, web, plugin, education, automated as-
sessment, teaching aid

ACM Reference Format:
Nikitha Rao, Rutha Prasad, Pallavi M.P., Nithin Bodanapu, Reshma Bhat, N.S.
Kumar, . 2019. PlayIt: A Pluggable And Interactive Drawing Tool For Tech-
nical Applications. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Diagrams have always been a primary choice of visual aid to sim-
plify complex ideas. While there are several tools available that
help facilitate construction of such diagrams, there is no single uni-
versal tool that spans over multiple domains (areas of interests)
that may be relevant to a user, especially for students. In addition
to this, when it comes to technical diagrams, there may be several
ways in which a user may want to interact with the diagram, for
example - evaluating a logic circuit given some inputs. It is not un-
common for users to want to analyze the diagrams and evaluate
them. While there are some tools which allow these interactions,
they are restricted to a specific domain and offer a selected set of
interactive functions.

Driven by the need for such a extensible tool that is flexible
enough to meet the varying needs of different users and domains,
we designed a web-based drawing tool for technical applications.
As the title suggests, PlayIt is a tool that can be plugged in with any
domain and configured to meet the needs of a given user without
making any changes to the tool itself, thus supporting extensibility.
It also brings the diagrams to life and allow users to interact and
"play" with it (design details discussed in Section 4). This gives all
expert users (teachers or users who have extensive knowledge in
the domain area) the choice to add any domain to the tool and make
it available to other users. This is achieved by allowing the expert
user to add in their domain-specific scripts, which can be started
off from our basic script template, directly into the tool (discussed
in depth in Section 5).

As mentioned earlier, just drawing a diagram may not always be
enough. Taking this into consideration, we let the domain expert
users decide what interactions they think is useful and relevant to
the domain of interest. The domain-expert users are given flexi-
bility to decide on the interactivity required for their target users.
The interactions can be as simple or complex as they desire. This
is especially useful when teachers want to control what interac-
tions and functions should be available to students when they are
required to create the figure and interact with it relevant to some
concept being taught.

One way to evaluate the correctness of diagrams in a test setting
could be to use image processing techniques. This is not only ex-
tremely complex, but also very dependent (on a domain) and unreli-
able. To help solve this problem, we introduce the concept of using
formal representations for diagrams. This also makes evaluation
easier as each interaction is now the result of predefined functions
that manipulate the diagram’s representation rather than the dia-
gram itself. We have defined the formal representation used to store
the figures in Section 3. This representation can be transformed if
required by the expert user. The expert of the domain also defines
the functions thus allowing the interactions to be more robust and

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Rao et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: A drawable image, a deterministic finite state au-
tomaton that accepts even binary numbers

- state1 state2
state1 1 0
state2 1 0

Table 1: The corresponding formal representation of the
DFA in Figure 1 would be a transition table. The start state
being state1 and state2 being the final state.

accurate. Figure 1 is an example diagram of a deterministic finite
state automaton which accepts even binary strings. The formal rep-
resentation for the same can be transformed to a transition table.
Table 1 shows the transition table for Figure 1. Using this formal
representation in place of images helps us overcome several chal-
lenges that arise in image processing and makes the system invari-
ant to scale and rotation, which are difficult to tackle using tradi-
tional image processing. In addition to this, image processing tech-
niques are more prone to errors and are not very robust. Though
using machine learning or deep learning can help overcome some
of those problems, it may be harder to get the desired accuracy in
analyzing and evaluating diagrams. This is important as we target
automatic evaluation of answers as an application for the tool.

We have also provided a mechanism to allow users to load their
diagrams that may be stored in XML or other non-image formats
from other tools. From a student’s (naive user’s) perspective, the
user can load their diagram and interact with the diagram based
on the interactions provided by the tool. From a teacher’s (expert
user’s) perspective, there may be certain functions that they’d want
to carry out which other tools may not provide. The teacher can
simply add that functionality to the tool, demonstrate the same and
make it available to the students to use. We have demonstrated the
same by using JFLAP [12]. Despite this being a one way connection
for now, it can easily bemade twoway by allowing other tools to call
functions on the tool and displaying the results obtained on their
platform.

The key technical contributions made in our paper is as follows:

• Extensibility: The tool can be augmented with any domain
of interest making it programmable and generic.

• Interactivity: We introduce the concept of using formal rep-
resentations for diagrams instead of storing them as images.
This enables users to interact with the diagram in various
ways.

• Pluggable: The domains and operations added are essentially
plug-ins as they can add functionality to the tool without
making any changes to the tool itself.

• Services: A user can import and interact with diagrams from
other tools. The operation functions themselves act as APIs
as other tools can effectively make use of the interactions
that are defined in the tool.

• PlayIt: Tool developed to demonstrate all the ideas presented
in our paper. As a proof of concept, three domains, namely,
digital logic circuit design, finite state automaton and basic
geometry were added to the tool. Several interactive func-
tions were also added to each one of the three domains.

The organisation of the remainder of the paper is as follows: Sec-
tion 2 identifies the limitations with various other tools that are cur-
rently available. The formal representation that is used to store the
diagrams is described in Section 3. The overall design of PlayIt, the
tool developed by us and the implementation details are enclosed
in Section 4. Section 5 enlists the algorithms for extending the tool
with different features. This is to emphasise on the simplicity of
the whole process. The current domains and interactive features
that were added to the tool as proof of concept have been enlisted
in Section 6. This is immediately followed by the evaluation of the
tool in Section 7. We conclude with Section 8 and 9 which give a
brief overview of the applications and the future work respectively.

2 RELATEDWORK
To the best of our knowledge, current education platforms do not
support extensibility by offering adaptation of customized code
modules. Analyzing and supporting alien functionalities requires
architectural diagnosis and interfacing, which are heavy design im-
plementations. For education in particular, tools have been used
in training specific courses only, restraining the involvement of in-
structors and students in customizing their own work flows and
automated assessments. Studying existing works helped design the
analytical framework that uses abstract interpretation to allow in-
structors to scale and students to learn in multi-domain training.

Pre-Packaged libraries of multiple domains with no as-
sessment support - Training tools, in our use case, graphic train-
ing tools, are generic to drafting and layouts in multiple domains
in order to improve the resource-fullness and speed of creation of
standard graphic elements [8][15]. Main aim being to displace man-
ual technical drawing, and have common utilization as the main
tool in computer-aided drawing, drafting and design like Draw.IO
[7], Vectr [19]. With no ability to interact with or analyze the dia-
grams. Analytical platforms would require understanding new user
input [18] and customizing output behaviour accordingly.

Trade off between offering zero customizability but high
specific functionality -Certain tools having fixed their functional
context to a small domain, can provide it’s extensive simulated
functionalities. Proving to be very powerful in their respective do-
mains, the architectures are not built to be extendable. Domain-
specific tools, Automaton Simulator [3] and JFLAP [12] dedicated
to finite automate courses offer complex pre-packaged function-
alities which limit the tool to a specific domain. Deciding on the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PlayIt: A Pluggable And Interactive Drawing Tool For Technical Applications Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

trade-off between specificity and generic modules helps design syn-
thetic architectures. Studies on the need to ease-in students into
new development environments [6] where they can find familiar
functionalities as taught during the course indicate the need for
adapting functionalities based on user feedback.

Offering adaptation of only low complexity alien code -
As an objective to allow custom interactions on diagrams, some
solutions allow adding functionality externally, but are required
to keep the functions rudimentary and specific to fit the back-
end code structures that they run on [11]. Adobe Illustrator [1]
is known to have a C plugin that can be used to develop custom
simple functionalities. To allow instructors to add in their own
customized assessments would only require mastering of formal
verification techniques and implementing generic checkers which
already fall under their expertise. Combining the approaches to
deriving infomatics from user data [2][17] and thus automating
assessment [10][9][16] from it would be the resulting step.

3 FORMAL REPRESENTATION
One of the primary contributions of the paper is the use of formal
representation to store the drafted figures which in turn facilitates
interactivity and extensibility of the tool. Before we get into the
formal representation, here is a brief description of some important
terms that are used throughout the paper.

• Domain - It refers to a given subject or the area of interest.
• Components - The different shapes which belong to a given
domain and have some meaning in the domain. For example,
states in an automata or gates in a logic circuit.

• Lines - Different components are connected to each other
using lines.

• Connectivity - The connectivity between components is
governed by the lines. Two components are said to be con-
nected if a line is present between them. A component is said
to connected to itself if a line references the same component.

Note - Every single component and line have various other prop-
erties such as label assigned, value, positional co-ordinates etc.

The formal notation of a given figure is defined as follows - A
given figure F can be represented as a three-valued tuple

F = (C, L, δ) (1)

where C is the component set, L is the line set and δ represents the
connectivity.

A component c ∈ C is said to be connected to another component
c ′ ∈ C if there exists a line l ∈ L between c and c ′.

The connectivity δ is defined as δ : C × L −→ C such that
if c and c ′ are connected by a line l then δ (c, l) = c ′. Similarly,
the representation for a component connected to itself would be
δ (c, l) = c . This is internally stored as a | C | × | C | matrix where
the cells in the matrix has a value l ∈ L if there is line connecting
the components.

Every single figure that is drawn on the tool is internally stored
as it’s formal representation. This representation is either used as
it is or is transformed into a suitable representation that is domain
specific. For example, this representation is used as it is in Logic
Design Circuits whereas it is transformed into a transition table in

Figure 2: High-level architectural design of the tool

the case of Finite State Automaton. The various functions which
are written to operate on the figure to make it interactive, manipu-
late this formal representation rather than the figure itself. We have
implemented the domains Logic Design Circuit, Finite State Au-
tomaton and Geometry which are very different from one another
as part of our proof of concept (discussed in Section 6) to show that
this formal representation generalizes to several domains which
can be extremely diverse in nature.

4 PLAYIT - OVERALL DESIGN
The overall design of our tool is broadly comprised of four com-
ponents; the user interface, the scripting that supports the user in-
terface, a server, and the back-end comprising of domain specific
structures. This modularity and loose coupling was maintained
throughout the high-level and low-level design such that any com-
ponent can be plugged into another software environment and of-
fer its core functionality coherently. The high-level architectural
design of the same can be seen in Figure 2.

4.1 User Interface Design
Initially inspired by Microsoft Paint, the UI mimics the intuitive
template of a white drawing canvas and its supporting toolbars. The
toolbar in the header supports standard options such as using the
line tool, the eraser, object selectors, color palletes and textboxes.
As the back-end server supports sessioning, we allow signing in and
signing out along with dedicated storage for each user. A tab menu
on the left container holds our four tabs - General File Options,
Domain Shapes, Domain Functions, and Shape Configuration. The
file options support standard operations such as opening, updating
and saving in multiple graphic formats. Depending on the chosen
domain, the domain shapes hold relevant figures and drawable
shapes that are displayed for the user to drag and drop onto the
canvas and build their own complex structures. Figure 3 shows the
various domain shapes that are a part of logic design. The domain
functions display all the executable functions that can be run on
the final structure present on the canvas. The shape configuring

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Rao et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: The domain shapes tab for logic design

tab contains the updatable configurations for each shape on the
canvas, allowing a user to experiment with the structure’s attributes
dynamically. Figure 4 shows the file options and configurations tab.
Apart from the tab menu, the right container holds the main canvas
which renders all graphics and is resizable upto seventy percent for
responsive browser sizing.

Figure 4: The file options and configurations tabs.

The UI design is aimed to be as minimalistic and user-friendly
alongwith providing extensive functionalities. Following theModel-
View-Controller (MVC) architectural pattern for designing the
whole front-end display, we use basic HTML5, Bootstrap and An-
gularJS 2.0. Bootstrap helps cut-down on styling specifics and pro-
vides additional javascript extensions. AngularJS incorporates the

Figure 5: An example logic design circuit drawn on the tool.

Model-View-View-Controller (MVVM) model into the user inter-
face andmainly supports the high dynamic nature of the canvas and
user activity. The event handlers are mainly written in Javascript
and JQuery. Event handlers for drag and drop, toolbar selections
and graphic related functions are scripted in Javascript and talked
about in the next section. Our choice of technologies was based
on checking support for all browsers and changing versions, and
having fallback patterns to support all internet speeds.

4.2 Graphic Rendering
Many popular libraries exist that offer state-of-the-art rendering
functionalities and our tool works with Fabric.JS[20]. On launching
the canvas, using the drag and drop handles for each shape, users
can interact with the canvas and the shapes can be resized and
moved anywhere on the canvas. Fabric also offers coding in custom
shapes such as straight lines and curved lines which are needed to
add connectivity between shapes to create complex group struc-
tures. We also handle the movement of lines [14] as we move the
objects in the canvas, thus keeping connectivity intact within the
shapes rendered. All coordinates are relative, thus allowing respon-
sive UI layouts. As the user sets the configurations for each shape
on the canvas, the Javascript event handlers use temporary tables
that store the state of each shape and the whole diagram, along
with custom properties for each diagram. Figure 5 is an example of
a logic design circuit that was drawn on EasyDraw. Fabric allows
converting the whole canvas into a JSON representation which
holds information about each component rendered on the canvas
along with the tables we use to track rendered shapes. These JSON
strings can be used to save and re-render the whole composition
and are the basis of our open and save file operations. These JSON
representational formats also aid in easy exchange of data with the
python back-end. They can also easily be converted into objects,
thus aiding in processing [4].

4.3 Server Scripting
Since most of our core functionalities are in graphic rendering and
back-end processing, our server remains simple. We chose Flask,
a python micro-framework to build the server. Since the server

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PlayIt: A Pluggable And Interactive Drawing Tool For Technical Applications Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

is minimal in functionality and does not require heavy security
and standardized structures, we chose Flask instead of Django.
Our server is simply a RestAPI webservice which receives calls
from Angular in the front-end and sends them to the Python back-
end for domain-specific processing, fetches back the response and
sends it back to Angular. The main flow of the server begins by
hosting the whole UI on start up. When a user logs in, a Flask
session is maintained, which captures the domain chosen, previous
work history, saved files and reloads all custom settings. When
the user chooses a particular domain, a web request is triggered
to fetch all related code-files (back-end scripts, library files, expert
functions, and domain-specific shapes), and is loaded into the user
interface. As the back-end functionalities are bound to the URLs
generated by the server, the UI(angular) can call these API methods
as get/post calls from triggered UI event handlers. When the user
wants to save their work, or run an evaluation on it, the encoded
JSON data prepared by the user interface scripts are sent to the
server. The processing requests and responses are exchanged using
JSON. We keep this JSON communication as a standard as it helps
the server communicate with external software tools (discussed
below in Section 5.3: Adding diagrams from another tool under
Results). Exception handling and debugging are implicit functions
offered in flask and Angular. Design patterns for periodic fetching
to aid network traffic in multi-session environments and server-
side events are implemented implicitly by the frameworks and are
incorporated in our server design.

4.4 Back-end Domain Design
The back-end’s core functionality is to use the structural composi-
tion of the graphics rendered in the front end and convert it into a
collection of objects on which functions can be executed. The en-
tire implementation of the back-end, which is coded in python, can
be broadly divided into two categories, a generic interface and the
domain specific structures. The structural composition and flow for
a domain in the back-end can be better understood from Figure 6.
For proof of concept we have developed the domains logic design,
finite state automaton and basic geometry.

Integration with the front-end - A configuration file having the
details of the functions offered by a domain along with a prompt
for what the function does is used by the tool to make the domain
specific interactions available to the users. An integrator module is
used to link the back-end to the front-end of the tool. The integra-
tor is responsible for creating the domain specific objects and call-
ing the respective functions. The server passes the function name
and arguments list along with the domain object to the integrator
which then calls the function and returns the result to the server in
the form of a JSON string. Thus the back-end communicates only
with the Flask server, and so can be plugged into other coding en-
vironments as a fully functional library on its own.

Basic Interface - A basic interface class provides the base imple-
mentation that any domain must implement. A constructor func-
tion of the basic interface implements the creation of the figure
object which comprises of the components, lines and the connec-
tivity details. The UI scripting component of the tool is responsible

Figure 6: Back-end design: The structural composition and
flow for a domain in the back-end

for providing all the necessary details that need to be stored by the
back-end. These details are used for creating the necessary elements
that are responsible for representing a figure (type of the shape, co-
ordinates of the shape on the canvas, the rotational angle, labels and
associated configured user inputs). A component class is used as the
base interface that each component must implement. The construc-
tor function of the component class initializes all the attributes for
each component as provided by the user interface. A line class is
used as the base interface that each line in the figure must comprise.
A constructor function of the line class initializes all the attributes
for each line as provided by the user interface. The connectivity
is given in the form of an adjacency matrix and denotes the rela-
tionships between the various components and the lines that link
two components. There are additional utilities provided to save the
figure, reload a figure and for parsing the JSON being exchanged.

Domain specific details - The domain class inherits the basic in-
terface class and builds on it. The constructor function initializes
the figure object whose properties include the components, the
lines and the connectivity. The components are objects of the com-
ponent class. The lines are objects of the lines class. The connec-
tivity is represented in the form of an adjacency matrix providing
details about the connected components and the line that connects
two components as the default implementation. However, this can

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Rao et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

be modified to suit the domain of interest. For example, for finite
state automaton, a transition table can be used as it provides details
about the states, the input alphabets and the corresponding state it
transitions to for a given input alphabet. In domains like geometry,
where there is no implicit graph like structure, the connectivity in-
formation is ignored and only the lines information is manipulated.
Functions can be added to interact with this figure object and the
results are returned to the server as JSON strings.

XML parser - As discussed below in section 5.3, Adding diagrams
from another tool under Results, an explicit parser needs to be built
to convert the diagrams representation, we used the XML repre-
sentation from JFLAP [12], into the format that the tool expects.
This includes information about the components, lines and the con-
nectivity between the various components. We make use of the
XML.etree.ElementTree module in python to parse the XML repre-
sentation and then create the structures necessary for the tool to
render the diagram. They are then transformed into the representa-
tion that is suitable for all back-end operations.

Figure 7: Use Case Diagram: The various possible interac-
tions of an expert and a naive user with the tool

5 EXTENSIBILITY
One of the primary goals was the extensibilty of the tool. Figure 7
shows the various interactions the users can have with the tool. It
also shows the different ways in which the expert user can extend
the tool by adding various domains and interactive functions. To
demonstrate the simplicity in extension of the tool, we provide the

high-level algorithms explaining all the steps required for an expert
user to add the necessary features.

5.1 Adding a new domain to the tool
To add a new domain to the tool, we first need to add all the neces-
sary images that are meant to be a part of the domain in a specific
folder. The user is also required to make a configuration file stating
all the functions the domain provides. An integrator file is respon-
sible for all the function calls that are made to the back-end. The
user is required to append to this file to ensure that the arguments
are parsed correctly and the function call is made. The returned
value is then sent back to the UI via the Flask interface.

As mentioned earlier, the loose coupling of the UI and back-
end helps maintain the same user experience, irrespective of what
domain is being added. The new shapes are added dynamically into
the shapes tab, and the new functions into the execution tab, thus
maintaining the same flow of activity for all the users.

Following this, the user now has to handle saving and reloading
of the diagrams. The UI passes three forms of tables - the compo-
nents, the lines, and the connectivity between the components. The
user is responsible to parse these tables into a structure suitable for
the formal representation of diagrams in the domain. For example,
a transition table is maintained for representing a finite automaton.
Once the user has this representation defined, they can perform
necessary interactions with it. They can have a set of predefined
functionality that can now be accessed by the UI. Note that there
can be additional functions added later on as well, as explained in
the section below. We have demonstrated this by implementing the
domains digital logic circuit, finite state automaton and basic ge-
ometry.

5.2 Adding new interactions to an existing
domain

As mentioned above, any changes made to the domain with respect
to the interface needs to be reflected in the configuration file and
the integrator file to ensure that the function is being called cor-
rectly. Apart from this, the user has complete freedom to manipu-
late the given representation and define any interaction on it. Once
defined, the function now becomes available on the UI and can be
accessed by other users. We have demonstrated this by having mul-
tiple functions in each domain. For example, checking if the given
automaton is a deterministic finite state automata or if the given
string belongs to the language. We have functions like evaluating
the circuit and generation of truth table for digital logic circuits.

5.3 Adding diagrams from another tool
In order to load the representation of a diagram (like XML) from
other tools, the user is required to build a parser that converts
the given representation into a form that is acceptable by the tool.
This includes the three structures having information about the
components, lines and connectivity. This can now be passed to an
existing domain so it is transformed into the desired representation
or the user can add a new domain to the tool by following the steps
mentioned above. Similarly, the existing functions can be called or
new functions can be added. The parsed results can be sent back to
the UI to render the diagram on the canvas. To conclude, once the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PlayIt: A Pluggable And Interactive Drawing Tool For Technical Applications Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

representation (from a different tool) is parsed, it can be loaded on
to our tool and various interactions can be performed with it.

We have successfully demonstrated this by carrying out the
stated procedure on JFLAP [12]. A parser was built to parse the
XML representation of diagrams that were originally drawn on
JFLAP and the results were passed to the domain-specific script
corresponding to the finite state automaton domain in the back-
end. The diagram can be rendered back to the UI and the defined
interactions can be performed on the loaded diagram.

5.4 Adding functions for automated evaluation
Additional functions can be added to the tool by a teacher to for-
mulate questions using the same procedure as above. For a given
question, a student user may input their response which can then
be verified by the tool automatically. Instead of returning the result
of a given interaction directly, the teacher can check if the result
matches the students response and automatically evaluate them.

6 RESULTS
Keeping the existing work in mind, we were able to develop PlayIt,
a tool with an extensible architecture for adding new domains with
relevant functions using the proposed solution. We also allow users
to load diagrams that were drawn on other platforms and allow
them to perform the necessary interations with them. We were
successfully able to design the tool while ensuring none of the back-
end is coupled with the tool. This allowed us to easily add and
remove domains by just making changes to the integrator module
and adding domain specific back-end script. Figure 8 demonstrates
the whole UI along with an example finite state automaton that
accepts even binary strings. You can also view the various ways in
which the user can interact with the diagram on the execution tab
on the left side of the canvas.

As a proof of concept, we have successfully extended the tool
with three domains, which are, digital logic circuit design, finite
state automaton and basic geometry. We have also added various
functionality to these domains allowing users to interact with the
diagrams. The domain specific interactions that are added currently
for the respective domains are as follows:

Digital Logic Circuit Design
• Evaluation of the circuit, given inputs.
• Generation of truth table for the given circuit.
• Generation of random inputs for the circuit (useful in exami-
nations where the student has to specify the expected output
by analyzing the behaviour of the circuit for a given input).

• Automatic evaluation of user’s output after evaluating the
circuit based on generated input.

Figure 9 shows the execution tab which comprises of all the
available interactions for the digital logic circuit design domain.

Finite State Automaton
• Check if the given input string is a part of the language
represented by the finite state machine.

• Generates the transition table for the given finite state ma-
chine (the transition table is generated for both determinis-
tic finite automaton as well as non-deterministic finite au-
tomaton).

• Generation of random inputs string using the alphabets of
the language.

• Automatic evaluation of user’s output to whether the given
string belongs to the language.

• Checks if the nature of the given automaton is deterministic
or non-deterministic.

Figure 9: The execution tab with all interactions for Digital
Logic Circuit Design.

Basic Geometry
• Calculate the perimeter and area of the given triangle.
• Calculate the circumcenter of the triangle.
• Calculate the centroid of the triangle.
• Calculate the incenter of the triangle.
• Calculate the orthocenter of the triangle.

Note that these are just some sample functions designed to
demonstrate proof of concept. It is not an exhaustive list of all the
interactions that can be added to a domain.

7 EVALUATION
Previous studies in computer-aided education [13][10][9][17][5]
have suggested that the availability of custom and familiar tool
development environments helps in production of more intuitive
and precisely defined solutions and problems. As mentioned ear-
lier, our previous survey suggested that extending and integrating
new module components was perceived by many users, instructors
and students, as the lacking feature in most training tools. Tools,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Rao et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 8: Basic design of the UI. A DFA drawn onto the canvas.

like Adobe and COLDVL, that did offer an adaptation interface ei-
ther required a steep learning curve or allowed rudimentary ad-
ditions. Most of the time, instructors are asked to follow certain
pre-defined steps and procedures to utilize all the features of the
tool. Any creativity they might have is consequently limited, es-
pecially with regard to producing and designing varied problem
statements for the students. The role of graphical tools, in these
scenarios, is not questioned by the teachers, and is looked as only a
range of drawing techniques. The implicit methods supported im-
pose choices on both type of users and thus do not offer an optimal
method to create relevant contexts. In light of the amount of time
teaching-learning processes include usage of computer-aided de-
signing, we found it key to offer the intuitive freedom of a designer
to the users directly. Our user studies reflect experiences of teach-
ers and pupils using this tool in their development framework and
in modelling assignments of their respective training subjects.

We conducted a short presentation which was followed by an
anonymised survey to collect feedback and comments. Below we
summarize the responses we received from the several professors
and students belonging to varying majors in different years of their
undergraduate studies.

Do such interactive visualizations actually help teaching -
learning process?Most participants appreciated the freedom of
designing a system and being able to control it’s functionality dy-
namically. This seemed to enhance their learning experience by
allowing them to observe the outcomes of mistakes in detail and
helping them precisely pick out the solutions. Two instructors men-
tioned that using the tool to show sequential design patterns in
Finite Automata and the incremental outcomes, helped their stu-
dents understand the concept faster than normal, and even encour-
aged students to experiment with their own design and patterns. A
short survey among students showed that majority of the students
preferred the courses to be more interactive and agreed that the vi-
sualizations and graphic tool made the coursework easier to grasp.

A majority of the professors agreed that having visualizations that
they could interact with helped present subject matters using nar-
ratives, which students followed better than blocked learning.

Were you able to represent visuals of a conventionally non-
graphic subject? Seeing how easy it was to flood in visual data and
interactively create multiple drafts of these visual elements, a few
participants confirmed the extensibility of the tool in pure graph-
ics as well. Subjects such as Data Structures, Advanced Algorithm
Design, were adapted and tested, by importing basic 2D shapes
and navigation elements, helped in converting complex data struc-
ture designs into easily explainable visualizations. Three students
managed to represent the reversal and functioning of a Linked List,
which was "very helpful since we could show how the design was
implemented in code simultaneously".

When would you choose this tool over existing solutions?
Several participants agreed that being able to write up and add
in their own functions, related to changing subject requirements
was a fresh feature that the tools that they were using previously
lacked. Few professors expressed their interest in using the tool
for automatic evaluation of assignments and exams. Since each
graphic draft is dumped into a tangible code structure, an automatic
checker would be able to run through the structure and match val-
idation checks set by the instructors. Several instructors also ex-
pressed that such a tool would be able to check for plagiarism to
ensure that students did not copy the solutions. They liked being
able to have multiple domains in the same tool as it saved time and
retained familiarity in usage. Several of them also expressed their
views on lack of existing tools that allowed them to interact with
the diagrams from different domains. They would have to explore
multiple tools which specialize in a particular domain, to find the
most suitable for their use case.

How did you like interacting with the tool? Participants who
used it purely from a users or students perspective found the tool

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PlayIt: A Pluggable And Interactive Drawing Tool For Technical Applications Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

simple and intuitive. They seemed to find drawing drafts and using
general functionalities similar to existing tools, although all agreed
for general improvements in the overall polishing of the look and
feel of the tool. Professors and Instructors who were able to add
in their own modules of custom graphic elements and functionali-
ties appreciated the simplicity of the interface template. For partici-
pants who were of non-coding backgrounds, a short introduction
was held to help them add in their use-cases. They later expressed
that they would be able to continue development independently
due to the ease of coding in Python. Students and Teaching Assis-
tants both mentioned that they were able to use the tool to make
their own practice assessments and teaching courses, switching
roles as instructors to understand problems better.

Do you have any concerns regarding the tool? One of the pri-
mary concerns expressed by professors who of non computer sci-
ence backgrounds was the lack of programming experience. But
upon explaining the backend design and showing a demo of how a
new domain can be added to the tool with just the basic knowledge
of python, these concerns were no longer present. Few participants
questioned if the tool would support using other programming lan-
guages apart from Python to write-up their modules and add it into
the tool. This was cleared when we explained the template behav-
ing like a generic API and thus virtually supporting any code base
of any preferred coding language.

Any additional comments Few professors expressed their inter-
est in using such a other domains that they are interest in incorporat-
ing into the tool which varied from electrical engineering, databases
and even differential mathematics. Few students also volunteered
to help the teachers in extending the tool to other domains.

8 APPLICATIONS
One of the most prominent applications for a pluggable web-based
drawing tool such as this is in the domain of education. With online
school and computer-based exams becoming more and more com-
mon among institutions around the world, this tool could be a great
way to help students incorporate diagrams to support their answers.
It also helps teachers by automating the evaluation of such answers.
Since the diagrams are internally stored as formal representations
rather than images, it becomes easier to compare them and evaluate
them without the need for complex image processing tasks. This
makes automated evaluation robust and reliable. The pluggable na-
ture of the tool allows any user who is an expert in a given domain
to add to the tool. Students no longer have to get familiar with dif-
ferent software for various subjects and can use this as an all-in-
one tool serving all their needs for drawing technical diagrams.

9 CONCLUSION AND FUTUREWORK
We have successfully developed PlayIt, a pluggable web-based draw-
ing tool, and tested it by plugging in the domains like logic design,
finite state automaton and basic geometry, each having it’s own
formal representation for the diagrams along with multiple inter-
actions that can be performed on them. This is achieved without
making any changes to the tool itself. The flexibility and freedom

this tool provides the users can be immensely exploited to create
custom functions as per one’s needs and requirements.

In the future, the tool can be extended to several other domains
of the users choice and can be open sourced for other people to
contribute. Image processing can be used to interpret existing im-
ages into the formal representation so different interactions can be
performed on them. Given a parsing tool that can convert any im-
age into a representation that the tool can interpret, we can design
a web plugin to automatically make all diagrams on websites like
Wikipedia interactive so students can not only read about a topic
but can also interact with the figures to understand concepts better.

Currently, expert users are required to write the domain specific
script; however, we are looking at ways in which this can be au-
tomated as well. Given the formal representation and set of rules
describing various functions, we want to design a code generator
that will automatically generate the domain specific script. We also
hope to incorporate this in the computer-based exams that are con-
ducted in the university and use it as a teaching tool in the classes.

REFERENCES
[1] Adobe.com. 2019. Adobe Illustrator. Retrieved Jan 31, 2019 from https://www.

adobe.com/in/products/illustrator.html
[2] Umair Z Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit

Gulwani. 2018. Compilation error repair: for the student programs, from the
student programs. In 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE, 78–
87.

[3] AutomataSimulator.com. 2019. Automata Simulator. Retrieved Jan 31, 2019 from
http://automatonsimulator.com/

[4] Tavmjong Bah. 2011. Inkscape: guide to a vector drawing program. Vol. 559.
Prentice Hall Boston.

[5] David Baneres, Robert Clarisó, Josep Jorba, and Montse Serra. 2014. Experiences
in digital circuit design courses: A self-study platform for learning support. IEEE
Transactions on Learning Technologies 7, 4 (2014), 360–374.

[6] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. 2018. Easing IoT devel-
opment for novice programmers through code recipes. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET). IEEE, 13–16.

[7] Draw.io. 2019. Draw.IO Homepage. Retrieved Jan 31, 2019 from https://www.
draw.io/

[8] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. 2000. Scalable vector graphics
(SVG) 1.0 specification. iuniverse.

[9] KNeeGoh and RHilisebuaManao. 2013. Assessing engineering drawings through
automated assessment: discussing mechanism to award marks. International
Journal of Smart Home 7, 4 (2013), 327–335.

[10] Kim Nee Goh, Siti Rohkmah Mohd Shukri, and Rofans Beleam Hilisebua Manao.
2013. Automatic assessment for engineering drawing. In International Visual
Informatics Conference. Springer, 497–507.

[11] Saul Greenberg, Mark Roseman, David Webster, and Ralph Bohnet. 1992. Issues
and experiences designing and implementing two group drawing tools. In Pro-
ceedings of the Twenty-Fifth Hawaii International Conference on System Sciences,
Vol. 4. IEEE, 139–150.

[12] JFLAP.org. 2019. JFLAP. Retrieved Jan 31, 2019 from hhttp://www.jflap.org/
[13] Patrice Laisney and Pascale Brandt-Pomares. 2015. Role of graphics tools in the

learning design process. International journal of technology and design education
25, 1 (2015), 109–119.

[14] Juan Pineda. 1988. A parallel algorithm for polygon rasterization. In ACM SIG-
GRAPH Computer Graphics, Vol. 22. ACM, 17–20.

[15] Antoine Quint. 2003. Scalable vector graphics. IEEE MultiMedia 10, 3 (2003), 99–
102.

[16] Gargi Roy, Devleena Ghosh, Chittaranjan Mandal, and Indraneel Mitra. 2015.
Aiding teaching of logic design and computer organization through dynamic
problem generation and automatic checker using COLDVL tool. In 2015 IEEE
Seventh International Conference on Technology for Education (T4E). IEEE, 15–22.

[17] Zarko Stanisavljevic, Bosko Nikolic, and Jovan Djordjevic. 2012. A module for
automatic assessment and verification of students’ work in digital logic design.
In 2012 IEEE 19th International Conference and Workshops on Engineering of
Computer-Based Systems. IEEE, 275–282.

[18] Renata Vaderna, Željko Vuković, Igor Dejanović, and Gordana Milosavljević.
2018. Graph Drawing and Analysis Library and Its Domain-Specific Language

9

https://www.adobe.com/in/products/illustrator.html
https://www.adobe.com/in/products/illustrator.html
http://automatonsimulator.com/
https://www.draw.io/
https://www.draw.io/
hhttp://www.jflap.org/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Rao et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

for Graphs’ Layout Specifications. Scientific Programming 2018 (2018).
[19] Vectr.com. 2019. Vectr Drawing Tool. Retrieved Jan 31, 2019 from https:

//vectr.com

[20] Mary C Whitton. 1984. Memory design for raster graphics displays. IEEE
Computer Graphics and Applications 4, 3 (1984), 48–65.

10

https://vectr.com
https://vectr.com

	Abstract
	1 Introduction
	2 Related Work
	3 Formal Representation
	4 PlayIt - Overall Design
	4.1 User Interface Design
	4.2 Graphic Rendering
	4.3 Server Scripting
	4.4 Back-end Domain Design

	5 Extensibility
	5.1 Adding a new domain to the tool
	5.2 Adding new interactions to an existing domain
	5.3 Adding diagrams from another tool
	5.4 Adding functions for automated evaluation

	6 Results
	7 Evaluation
	8 Applications
	9 Conclusion and Future Work
	References

