
Handling Class Imbalance with POISE: pAUC Optimization in
Supervised Experiments

Nikitha Rao

t-nirao@microsoft.com

Microsoft Research, India

Sreangsu Acharyya

srach@microsoft.com

Microsoft Research, India

ABSTRACT
Recognizing the well known deficiencies of classification accuracy

as a quality metric in class imbalanced scenarios, we reaffirm the

use of partial AUC (pAUC), which is an improvement over the re-

lated metric of AUC. Optimizing pAUC is formulated as a two per-

son zero-sum game between (i) an adversary that selects a fixed

fraction of negative examples and (ii) a learner that needs to assign

higher scores to the positive examples, no matter the choice of the

adversary. The optimal scoring function is obtained as an equilib-

rium of this game. This optimization is combined with an efficient,

task specific vector embedding that captures the geometry induced

by decision trees, thereby extending the method to datasets that are

not linearly separable. We evaluate our proposed solution by com-

paring its performance against state of the art alternatives (such as

LambdaMART, RankSVM) as well as popular alternatives such as

SMOTE and make note of the superior performance obtained.

KEYWORDS
partial auc; learning to rank; bipartitie ranking; class imbalance

ACM Reference Format:
Nikitha Rao and Sreangsu Acharyya. 2020. Handling Class Imbalance with

POISE: pAUC Optimization in Supervised Experiments. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Despite classification accuracy being a common measure of model

performance, it can be misleading for imbalanced datasets. In such

cases, a classifier can achieve high accuracy by predicting the ma-

jority class — making the ability to distinguish classes unnecessary

for achieving good performance — defeating the purpose of the

classifier and the performance metric. This has led to the use of

other metrics like precision-recall, F1 score [4].

For classifiers obtained by thresholding a scoring function, the

receiver operating characteristic (ROC) curve, which plots the true

positive rate (TPR) against the false positive rate (FPR) at differ-

ent thresholds, has been used in various fields where evaluation of

discrimination performance is of importance. TPR is the propor-

tion of positive labels that are correctly identified and FPR is the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Partial AUC in FPR range [𝛼, 𝛽]

proportion of negative labels incorrectly identified. The area under

the ROC curve (AUC), computed as the TPR averaged over the full

range of possible FPRs, is a popular performance metric that is used

in binary classification and bipartite ranking problems [1, 27, 38].

AUC is often preferred over Accuracy, particularly when misclassi-

fication costs are high or the classes are imbalanced [5, 11, 28].

Most applications, however, cannot operate in the complete FPR

range and need to achieve high TPR at low FPR range. AUC being

an average over the entire FPR range allows a classifier to recover

performance lost in low FPR regimes by performing well in high

FPR regime, although, it will not be operating under such high FPR

regimes in practice.

This deficiency of AUC can be mitigated by averaging over ap-

plication relevant FPR ranges, thereby obtaining partial area under
the ROC curve (pAUC) between two specified false positive rates

(as shown in Figure 1). This is especially useful in medical diagno-

sis [18, 21, 42] where a high TPR is required at low FPR. In ranking

problems [1, 38] where the accuracy at the top is critical [37] or in

biometric screening where false positives are unacceptable, the left-

most part of the ROC curve is of utmost importance corresponding

to maximizing the partial AUC in the false positive range [0, 𝛼] [1,
34, 39]. Note that the partial AUC is equal to the AUC when 𝛼 = 1.

In this work, we present a partial AUCmaximization algorithm to

handle class imbalance that uses a game theory formulation for the

cost function. Minimizing pAUC loss is formulated as a two person

zero-sum game between (i) an adversary that selects a fixed fraction

of negative examples and (ii) a learner that needs to assign higher

scores to the positive examples, no matter the choice of the adver-

sary. The optimal scoring function is obtained as an equilibrium of

this game. First, we recall a reduction of a linear scoring function

based AUC maximization to a linear classification problem. The re-

striction to linear separators, an unfortunate limitation of this reduc-

tion, is removed by a novel use of learned decision tree paths. The

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Nikitha Rao and Sreangsu Acharyya

efficient, task specific vector embeddings leverage the geometry in-

duced by decision trees to capture any inherent non-linearity in the

data, thereby allowing us to extend the proposed method to datasets

that are not linearly separable. Note that the non-linearities ex-

ploited for class separation are not predetermined but learned from

data. Finally, we evaluate our proposed method on a number of pub-

licly available benchmark datasets and compare our performance

with other state of the art models. We demonstrate empirically that

our approach is both fast and scalable. We also show that it not only

performs well for learning to rank tasks but can also generalize to

other problems where accuracy at the top is of utmost importance.

Our contributions can be summarised as follows:

(1) We present a partial AUC maximization algorithm to handle

class imbalance that uses a game theory formulation for the

cost function (described in Section 5).

(2) We introduce the novel use of learned decision tree paths as

vector embeddings to capture any inherent non-linearity in

data (described in Section 4).

(3) We demonstrate empirically that our approach is both fast and

scalable. We also show that our method not only performs

well for learning to rank tasks but can also generalize to other

problem spaces where partial AUC or accuracy at the top is

crucial.

The remainder of this paper is organized as follows: We present

an overview of the literature in Section 2. In Section 3 we review

the AUC maximization formulation. In Section 4, we show intro-

duce vector embeddings based on learned decision tree paths fol-

lowed by the proposed method for pAUCmaximization in Section 5.

We present our experimental setup and results in Section 6 and Sec-

tion 7 respectively. Finally, we present a discussion in Section 8 and

conclude the paper in Section 9.

2 BACKGROUND AND RELATEDWORK
Learning to rank methods have been used to solve different types

of ranking problems in a variety of domains including information

retrieval [31] (document retrieval, collaborative filtering, question

answering and online advertising) [12, 30, 49, 57], recommendation

systems [16, 40, 44], computational biology [48] and software engi-

neering [36, 53]. Based on the input representation and loss func-

tion, learning to rank algorithms can be categorized into three types:

pointwise [15, 26, 50], pairwise [6, 14, 23] and listwise [7, 33, 52].

In the pointwise approach, each query-document pair in the

training data has a numerical score associated with it. Here, the

learning to rank problem is approximated to a regression problem

where the goal is to predict the relevance score for a given a query-

document pair. Some examples include: MART, CRR, McRank etc.

In contrast, the pairwise approach approximates the learning to

rank to a binary classification problem where given a pair of doc-

uments, the goal is to identify the document that is of higher rel-

evance. Some examples include RankSVM, RankNet, RankBoost,

LambdaRank and so on. On the other hand, listwise approach aims

to directly optimize the ranking metrics such as Normalized Dis-

counted Cumulative Gain [20] or Expected Reciprocal Rank [8] for

a set of ranked documents averaged over all queries. Optimizing

the ranking metrics is not easy as several of the ranking measures

are discontinuous functions. However, this problem has been in-

tensively studied and there are a range of methods available in the

literature for direct optimization of metrics [7, 33, 52, 58].

Algorithms falling into the pairwise category are able to handle

class imbalance in ranking as they perform a comparison between

every document pair to find the relative relevance, eliminating any

imbalance that may be present. Though several algorithms have

been developed for optimizing AUC in ranking [3, 14], they fail to

performwell in scenarios where accuracy at the top is of importance.

This is because when optimizing for AUC, the algorithms make

up for the performance lost at low FPR by performing well at high

FPRs. However, in practice we cannot afford to operate at such high

FPR and therefore need to optimize for pAUC instead.

2.1 pAUC maximization
Despite AUC being commonly used to measure model performance,

several applications such as bioinformatics [29, 48], medical diag-

nosis [21, 42] and computer vision [41] are now using pAUC as

their choice of evaluation metric.

The problem of optimizing pAUC in a given FPR range has been

primarily studied in the bioinformatics literature. For example, the

greedy heuristics method [46] maximizes pAUC by means of lin-

ear combination of classifiers. However, several of the algorithms

developed are based on heuristics that are specific to a given appli-

cation and fail to generalise.

Several modifications have been made to the standard SVM al-

gorithm [54] to maximize both AUC and pAUC in a given FPR

range. While the structural SVM algorithm by Joachims et al. [22]

optimizes multivariate non-linear performance measures to maxi-

mize AUC. Other variations of the SVM like the asymmetric SVM

algorithm uses a variant of one-class SVM to optimize for pAUC

in [0, 𝛼] by fine-grained parameter tuning. SVMpAUC [34] extends

the structural SVM framework of Joachims [22] to design convex

surrogates that optimizes for pAUC using a cutting plane solver.

Narasimhan et al. [35] further extends the SVMpAUC to maximize

the pAUC in the FPR range [𝛼, 𝛽] by using a tighter approximation

that directly optimizes the non-convex surrogate using well known

non-convex optimization techniques based on difference-of-convex

programming. Additionally, there have been several boosting based

algorithms that optimizes AUC and pAUC. While algorithms like

AdaBoost, RankBoost aim to maximize the entire area under the

ROC curve, pAUCBooost and pU-AUCBoost optimize for pAUC in

general false positive ranges of the form [𝛼, 𝛽].
Our work is different from the existing work primarily in two

aspects: a) This is the first work to use a game theory formulation for

optimizing pAUC. We formulate the pAUC loss minimization as a

zero-sum game between (i) an adversary that selects a fixed fraction

of negative examples and (ii) a scoring function that needs to assign

positive examples higher scores, irrespective of the choice of the

adversary. An equilibrium of this game results in the optimal scoring

function. b) We introduce a novel task specific vector embedding

technique that captures the geometry induced by decision trees.

The learned decision tree paths exploit any non-linearities that may

be present in the data thereby extending the proposed method to

datasets that are not linearly separable.

Handling Class Imbalance with POISE: pAUC Optimization in Supervised Experiments Conference’17, July 2017, Washington, DC, USA

3 PAIRWISE FORMULATION FOR AUC
In this section we recall a standard reduction of the AUC maxi-

mization problem into a linear classification problem via the use of

pairwise differences between the positive and negative examples

[32]. Let X+ = {x+
1
, x+

2
, . . . , x+

𝑁+
} be a set of 𝑁 +

positive examples

and X− = {x−
1
, x−

2
, . . . , x−

𝑁−
} be a negative example set of size 𝑁−

where x ∈ R𝑛 such that 𝑁+ ≪ 𝑁− and 𝑦 ∈ {−1, 1} is the class label.
We use the scoring function𝑄 : R𝑛 ∋ x ↦→ 𝑄 (x) = w⊤ · x ∈ R. The
goal is to find a weight vector, w, such that, 𝑄 (x𝑖) > 𝑄 (x𝑗) where
𝑦𝑖 = +1, 𝑦 𝑗 = −1. This implies w⊤ · x𝑖 > w⊤ · x𝑗 , or equivalently,
w⊤ · (x𝑖 − x𝑗) > 0.

With subscript 𝑖 indexing over the set X+ and subscript 𝑗 in-

dexing the set X−, let us define z𝑖 𝑗 = x𝑖 − x𝑗 , 𝑦𝑖 𝑗 = +1 and z𝑗𝑖 =
x𝑗 − x𝑖 , 𝑦 𝑗𝑖 = −1. The identities w⊤ · z𝑖 𝑗 > 0 and w⊤ · z𝑗𝑖 < 0,

confirms that this is a reduction to a linear classification problem,

where vector w separates the classes

⋃
z𝑖 𝑗 from

⋃
z𝑗𝑖 .

Given sets X+ and X−, the AUC induced by the linear scoring

function 𝑄 (x) = w⊤ · x can be computed as,

𝐴𝑈𝐶 (𝑤) = 1

𝑁+𝑁−

∑
𝑖∈X+

∑
𝑗 ∈X−

1(w⊤ · (x−𝑗 − x+𝑖) > 0), (1)

where 1(·) is the indicator function. Maximizing AUC over linear

scoring functions is then equivalent to finding w that minimizes

Equation 1, stated formally as

min

w

1

𝑁+𝑁−

∑
𝑖∈X+

∑
𝑗 ∈X−

1(w⊤ · (x−𝑗 − x+𝑖) > 0) . (2)

A standard practice in machine learning is to replace the intractable

sum of indicator functions in an objective function by an upper

bound obtained by replacing indicator functions by convex upper-

bounding surrogate. Replacing the indicator functions in (1) by the

Hinge function ℎ(𝑥) = max(0.𝑥 + 1) and adding a 𝐿2
2
regularizer

we obtain the surrogate objective, which readers will recognize as

the objective function of an SVM (support vector machine) [54].

min

w

1

𝑁+𝑁−

∑
𝑖∈X+

∑
𝑗 ∈X−

ℎ(w⊤ · (x−𝑗 − x+𝑖)) + 𝑐 ∥w∥2 . (3)

4 USING NON-LINEAR FEATURES
A limitation of the reduction discussed in Section 3 is that it applies

to linear classifiers only. Datasets where classes are not linearly

separable are common. This makes non-linearity essential to class

separators if they are to be widely applicable. In this section we

reconcile these two conflicting aspects of our approach.

Kernel methods are frequently adopted when linear methods are

inadequate [19]. They typically use a predetermined kernel func-

tion 𝐾 (· , ·) that maps a point x, implicitly and non-linearly, to a

point 𝜙 (x) = 𝐾 (x𝑖 , x) in the feature space where the classes are bet-

ter separated linearly. In contrast, we use an explicit non-linearity
learned from data to increase the linear separability of the classes in

the feature space. In order to do so, we rely on two key properties,

(i) a well known empirical observation that decision trees are one

of the state of the art classifiers that can effectively separate classes

that are not linearly separable and (ii) an interpretation of such de-

cision trees as a vector embedding that facilitates linear separation.

Figure 2: Feature generation using decision tree path

The remainder of the section is presented in two parts. The

first describes how, given a decision tree, we obtain the non-linear

vector embedding of items so that they are more amenable to linear

separation. The second describes how we obtain the decision tree.

4.1 Vector embedding using decision tree
The root node of a decision tree represents the entire input domain

that is partitioned into two by a node-specific predicate. Each such

partition produced is represented by a child node that is partitioned,

similarly and recursively, as many times as necessary to promote

purity of label proportions in the leaf partitions. Leaf nodes of the

tree are assigned the majority label of the corresponding partition.

To predict the label of a data-point x, one identifies the leaf node
reached by traversing the tree by selecting the left or the right child

as indicated by the node predicate evaluated on x. The predicted
label is the label of the leaf node reached. Formally, this can be

expressed as ∑
𝑝∈𝑃𝑎𝑡ℎ𝑠 [𝐼]

𝑦𝑖1𝑝𝑖 (x) (4)

where 1𝑝𝑖 (x) is the indicator function that takes a value of 1 if x
reaches the 𝑖𝑡ℎ leaf by traversing the tree (using the unique path 𝑝𝑖).

Using the formal similarity of expression (4) with the expression

of a standard kernel classifier∑
𝑖

𝑦𝑖𝜆𝑖𝐾 (x𝑖 , x)

we interpret the function 1𝑝𝑖 (x) as an approximate weighted kernel

function 𝜆𝑖𝐾 (x𝑖 , x) defined by an unknown x𝑖 . Informally, a kernel

function 𝐾 (x𝑖 , x) quantifies the similarity between x and x𝑖 much

as 1𝑝𝑖 (x) measures the similarity of xwith path 𝑝𝑖 , also represented
by an embedded vector.

Given a decision tree with 𝑁 nodes we map the data points to a

𝑁 − 1 dimensional space where each dimension corresponds to one

of the 𝑁 − 1 edges of the tree. Dimensions that correspond to edges

lying on 𝑝𝑖 take (an absolute) value of 1.0, others are 0. These are

scaled by 1.0 or −1.0 depending on the class label of the leaf node.

Given that only one edge emerging from a node may be followed,

there is no loss in generality in considering a frugal embedding of

dimension of (𝑁 − 1)/2 obtained by choosing one of the out edges

of all non-leaf nodes.

Figure 2 is an example of a decision tree. Data sample x1 follows
the red path while x2 follows the blue path. The decision tree path

taken by x1 is t1 = [01010010] and 𝑥2 is t2 = [01101000]. Therefore,
𝐾 (x1, x2) = t1 · t2 = 1.

Conference’17, July 2017, Washington, DC, USA Nikitha Rao and Sreangsu Acharyya

Figure 3: Common prefix as inner product

The non-linear mapping from data space to feature space is

obtained by associating each leaf node of the decision tree with a

vector such that all data points that reach the leaf node are mapped

into the leaf specific vector. The embedding is chosen such that

points with the same class label map to vectors close to each other

if they reach leaves that are close in shortest path distance in the

tree. On the other hand, since sibling leaves have opposite class

labels they are kept apart by embedding them as antipodes – the

sibling of a leaf embedded as p is embedded as −p.
A property enjoyed by this embedding is that the 𝐿2

2
distance

induced by the inner product generates the graph shortest path

metric, as shown in Figure 3. The depth of a node corresponds

to squared norm of its vector embedding. Since nearby points in

the data space are likely to belong to the same node if they have

the same class label, the embedding scheme retains a degree of

smoothness with respect to the data space.

In addition to the concatenated embedding [x, t] where x is the

original feature and t the decision tree path features, one can use

other possibilities, for example, [x, t, x⊗ t], and spectral embedding

of the Gaussian kernel 𝐾𝑖 𝑗 = 𝑒
−(t𝑖−t𝑗)2/𝜎2

. Note that, in the limit

of 𝜎 → 0, the kernel approaches the decision tree function 1𝑝𝑖 (x) .

4.2 Learning the decision tree
It is well known that decision trees only learn axis parallel parti-

tions. As a result, learning non-axis aligned separations causes the

depth of the learned tree to be unnecessarily large and makes the

learning process tedious as it requires a significant amount of ad-

ditional resources. Therefore, when training the decision tree, we

make sure that the focus is explicitly on learning the non-linearity

by assigning the task of learning a linear separator to the linear

AUC maximization algorithm from Section 3. This ensures that the

decision tree does not have to relearn the linear separator that has

already been learnt by the linear AUC maximizer.

The trained linear AUC maximizer is then used to compute the

output scores for the data points after which the scores are ap-

pended to the original data as an additional feature. When training

the decision tree, we observe that the first split typically occurs on

the output scores generated by the linear AUC maximizer. After the

initial split partitions the data, we upsample the two resulting data

sets separately using SMOTE [9]. This is done to ensure that the

positive and negative subtrees have sufficient samples from each

class so that the learning process does not suffer from any imbal-

ance that may be present in the original data. In the end, we use

the learned decision tree paths to derive the vector embeddings.

5 PARTIAL AUC FORMULATION
Given a scoring function𝑄 : x ∈ R𝑛 ↦→ R, let 𝑞𝛼 (X−, 𝑄) denote the
(1−𝛼) quantile of the set of scores {𝑄 (x) |x ∈ X−}. Thus, cardinality
of the set 𝑆𝛼,𝑄 ≜ {x|𝑄 (x) ≥ 𝑞𝛼 (X−, 𝑄), x ∈ X−} satisfies the

identity |𝑆𝛼,𝑄 | = 𝛼 |X− |. Given these definitions, and making the

dependence on w explicit, one can evaluate pAUC obtained by a

linear scoring function 𝑄 (x) = w⊤ · x as

𝑝𝐴𝑈𝐶𝛼 (w) = 1

𝑁+𝑁−𝛼

∑
𝑗 ∈𝑆𝛼,w

∑
𝑖∈X+

1(w⊤ · (x−𝑗 − x+𝑖) > 0).

Given the difficulty of minimizing over indicator functions, we

upper bound them by the hinge loss function obtaining

min

w

1

𝑁+𝑁−𝛼

∑
𝑗 ∈𝑆𝛼,w

∑
𝑖∈X+

ℎ(w⊤ · (x−𝑗 − x+𝑖) < 0). (5)

This optimization problem is significantly different from the Equa-

tion (2) presented in Section 3 because the domain of the summa-

tion over the set X− (indexed by subscript 𝑗) is no longer indepen-

dent of w and hence the reduction to the classification problem

does not apply. To solve, we pose Equation (5) as an equivalent two

person, zero-sum game between (i) an adversary(henceforth, 𝑆−
player) that chooses 𝑆 under the restrictions stated, to maximize

the loss and (ii) the learner that tries to minimize the loss.

min

w
max

𝑆⊂X−
|𝑆 |=𝛼𝑁−

1

𝑁+𝛼𝑁−

∑
𝑖∈X+

∑
𝑗 ∈𝑆

ℎ(w⊤ · (x−𝑗 − x+𝑖) < 0). (6)

This equivalence holds because for any choice of w the set 𝑆𝛼,w is

indeed the most adversarial set that the 𝑆−player can choose under

the stated restrictions. Marginalizing out 𝑆 , we obtain the learner’s

loss function to be

𝐷 (w) ≜ max

𝑆⊂X−
|𝑆 |=𝛼𝑁−

1

𝑁+𝛼𝑁−

∑
𝑖∈X+

∑
𝑗 ∈𝑆

ℎ(w⊤ · (x−𝑗 − x+𝑖) < 0) (7)

Claim 1. 𝐷 (w) as defined in (7) is convex in w.

Proof. For a fixed set 𝑆 the RHS of (7) is convex because it is a

sum of convex functions. The expression 𝐷 (w) is a maximum of a

finite number of convex functions and is hence convex. □

Subgradient computation: The function 𝐷 (w) is not differen-
tiable but is differentiable almost everywhere. Using subgradient

calculus one can show [47] that its subgradient is obtained as

𝜕𝐷 (w) = 1

𝑁+𝛼𝑁−

∑
𝑖∈X+

∑
𝑗 ∈𝑆𝛼,w

w⊤ · (x−𝑗 −x+𝑖)<1

(x−𝑗 − x+𝑖) .

We minimize the loss function 𝐷 (w) by using the subgradient

descent algorithm Pegasos [51].

Handling Class Imbalance with POISE: pAUC Optimization in Supervised Experiments Conference’17, July 2017, Washington, DC, USA

5.1 Sampling
The subgradient steps discussed above require re-computation of

𝑆𝛼,w at each w update. This would entail selecting the top 𝛼 frac-

tion of the re-scored negative examples incurring a time complexity

of O|X− | log |X− |. To make the the algorithm scalable, we stochas-

tically estimate 𝑞𝛼 (X−, 𝑄) which corresponds to the (1 − 𝛼) quan-
tile of the scores induced on X− by the updated weights.

This estimate is obtained by selecting a sample of size𝑚 fromX−
uniformly at random by reservoir sampling [56] and is not repeated

at every update of w. The points in the sample are re-scored with

updated weight at every update and the top 𝑘𝑡ℎ item, that is, the

(𝑘,𝑚) order statistics is selected to yield our estimate 𝑞𝛼 (X−, 𝑄) .
The values of 𝑘,𝑚 are chosen such that the expected value of Ew⊤ ·
x𝑘,𝑚 equals 𝑞𝛼 (X−, 𝑄) with as low variance as desired.

In order to see how 𝑘 and𝑚 may be chosen, consider 𝑈𝑘,𝑚 to

be the (𝑘,𝑚)𝑡ℎ order statistics of a sample of size𝑚 drawn from a

unit uniform distribution. Random variable𝑈𝑘,𝑚 ∼ 𝐵𝑒𝑡𝑎(𝑘,𝑚 −𝑘 +
1), that is, it is distributed as a Beta distribution with parameters

𝑘,𝑚 − 𝑘 + 1 [2]. Thus,

E[𝑈𝑘,𝑚] = 𝑘

𝑚 + 1

, Var[𝑈𝑘,𝑚] = 𝑘 (𝑚 − 𝑘 + 1)
(𝑘 +𝑚 − 𝑘 + 1)2 (𝑘 +𝑚 − 𝑘 + 1 + 1)

Imposing the constraints E[𝑈𝑘,𝑚] = 𝛼 and Var[𝑈𝑘,𝑚] = 𝜎2 (where
𝜎 is the desired standard deviation of the estimate) one can easily

solve for 𝑘 and 𝑚 as two unknowns in two equations. Note, in

particular, that the solutions of 𝑘,𝑚 are independent of the size of

X−. Our experiments are reported for a choice of 𝜎 = 𝛼/10.

Algorithm 1: Partial AUC maximization algorithm

Input: X+,X−, 𝛼, 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠
Output: w

1 w0 = [w0,w1, ...,w𝑛] such that w𝑖 ∈ 𝑈 (−1.0, 1.0)
2 for t=1,...,n_epochs do
3 for x−

𝑖
∈ X− do

/* Uniformly sample 𝑁− */

4 𝑆 = 𝑠𝑎𝑚𝑝𝑙𝑒 (X−, 𝛼)
/* compute the score for subset of

negative samples and sort them */

5 𝑄 (x) = w𝑡
⊤ · x ∀x ∈ 𝑆

/* get the score at the (1−𝛼)𝑡ℎ quantile */

6 𝑞𝛼 = (1 − 𝛼)quantile of𝑄 (x) x ∈ 𝑆
7 if w𝑡

⊤ · x−
𝑖
> 𝑞𝛼 then

/* compute pairwise difference of x−
𝑖

with all positive samples X+ */

8 𝐷 (w𝑡) =
1

𝑁+

∑
𝑗 ∈X+

1(w𝑡
⊤ · (x−𝑖 − x+𝑗) > 0)

/* update weight vector by gradient

descent */

9 w𝑡+1 = w𝑡 − 𝜂𝜕𝐷 (w𝑡)

Table 1: Summary of datasets

Data Dataset Number of Number of imbalance
Source instances features ratio
LETOR MQ2007 69,623 46 17:1

4.0 MQ2008 15,211 46 15:1

a9a 48,842 123 3:1

UCI covtype 581,012 54 1:1

ijcnn1 141,691 22 10:1

letter_img 20,000 16 26:1

6 EXPERIMENTAL SETUP
In this section, we provide a description of the experimental setup

and elaborate on the various benchmark datasets and baseline

models. We broadly look at two real world scenarios: learning to

rank task for extreme class imbalance and the more generic binary

classification task for imbalanced datasets.

6.1 Datasets
Learning to Rank: We conduct our experiments on two bench-

mark datasets: MQ2007 and MQ2008 that are publicly available

as part of the supervised ranking setting in LETOR 4.0 [43]. The

MQ2007 has around 1, 700 queries with an average of 41 labeled

documents per query. This totals to 69, 623 query-document pairs.

The MQ2008 on the other hand has around 800 queries with an av-

erage of 19 labeled documents per query totalling to 15, 211 query-

document pairs. Each query-document pair is represented by a 46-

dimensional feature vector in both the datasets and has a relevance

score of 0, 1 or 2, where larger the relevance score, more relevant

the query-document pair.

We transform the relevance scores into a binary label by setting

a threshold such that, relevance score 2 indicates that the query-

document pair is relevant (positive label) and relevance scores 0 and

1 indicate that the query-document pair is irrelevant (negative label).

Table 1 summarizes the number of instances, features and imbal-

ance ratio for the datasets. Both datasets contain a training, a valida-

tion, and a test set. We tune the hyperparameters on the validation

set and perform the final model evaluation on the held-out test set.

Both MQ2007 and MQ2008 can be downloaded from LETOR 4.0
1
.

Binary Classification: To demonstrate that the proposed pAUC

maximization algorithm generalises to other binary classification

tasks having class imbalance, we additionally perform experiments

on a number of benchmark datasets obtained from the UCI machine

learning repository [13], where pAUC is a performance measure of

interest. We look at problems in different domains:

• a9a - The goal is predict whether income exceeds $50, 000

per year based on census data.

• covtype - The goal is to predict the forest cover type. We

use the binary class version of this dataset.

• ijcnn1 - This is first problem (generalization ability chal-

lenge) of IJCNN challenge 2001 [10].

1
https://www.microsoft.com/en-us/research/project/letor-learning-rank-

information-retrieval/

Conference’17, July 2017, Washington, DC, USA Nikitha Rao and Sreangsu Acharyya

• letter_img - Here, the objective is to identify the capital

letter ‘Z’ in the English alphabet from a large number of

black-and-white rectangular pixel displays.

Table 1 summarizes the number of instances and features present

in each dataset. In each case, we do a random 75 : 25 split (while

maintaining class distribution) where 75% of the data is used for

training and the remaining 25% of the data is used for testing. The

processed versions for a9a, covtype and ijcnn1 was downloaded

from LIBSVM
2
and letter_img was downloaded from the python

imblearn.datasets package
3
.

6.2 Models
Learning to Rank: We compare the performance of our proposed

method (pAUCmax) for learning to rankwith the AUCmaximization

model (AUCmax) and two other state of the art baseline models:

• LambdaMART [6]: LambdaMART, a combination of Lamb-

daRank and MART (Multiple Additive Regression Trees), is

a popular ranking algorithm used in commercial search en-

gines. It makes use of gradient boosted decision trees using

a cost function derived from LambdaRank for optimizing

ranking metrics like NDCG, MRR, AUC and so on. We used

the implementation from the python learning to rank toolkit

(pyltr)
4
for building the LambdaMART model.

• RankSVM [23]: RankSVM, a variation of the support vec-

tor machine (SVM) algorithm [54], is a classic learning to

rank model that employs pairwise ranking methods to auto-

matically sort results based on the document relevancy for a

given query. We used the implementations in SVM
rank5

.

In our learning to rank experiments, we tune the models to op-

timize for AUC during the training process. We tune other hyper-

parameters with guidance from prior work and further fine-tune

them on the validation set. We evaluate the performance of the

ranking models on imbalanced data by comparing both the AUC

as well as the pAUC in the FPR range [0.0, 0.1].

Binary Classification: We also conduct experiments to compare

the performance of our proposed method (pAUCmax) for partial

AUC maximization with the AUC maximization model (AUCmax)

and five other state of the art baseline models:

• SVMAUC [22]: Structural SVM algorithm that optimizes mul-

tivariate non-linear performance measures like the F1 score.

We use this model to optimise for AUC. The SVMAUC algo-

rithm is implemented using the publicly available API[55]
6

• SVMpAUC [34]: Builds on the structural SVM (SVMAUC)

framework [22] to design convex surrogates that optimizes

for pAUC in FPR range [𝛼, 𝛽] using a cutting plane solver.

We used the implementation provided by [34]
7
.

• SVMdc
pAUC [35]: Building on SVMpAUC [34], 𝑆𝑉𝑀𝑑𝑐

𝑝𝐴𝑈𝐶
max-

imizes the pAUC in FPR range [𝛼, 𝛽] using a tighter approx-

imation that directly optimizes the non-convex surrogate

2
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html

3
https://imbalanced-learn.readthedocs.io/en/stable/datasets/

4
https://libraries.io/pypi/pyltr

5
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

6
http://svmlight.joachims.org/svm_struct.html

7
http://clweb.csa.iisc.ac.in/harikrishna/Papers/SVMpAUC/

Table 2: Evaluating the usefulness of the vector embeddings
from learned decision tree paths in pAUC maximization in
FPR range [0.02, 0.05] on UCI datasets.

Dataset Type pAUC(0.02, 0.05)
a9a covtype ijcnn1 letter_img

Concatenated 0.3978 0.5751 0.7206 0.9276
Raw 0.2828 0.4354 0.4742 0.9063

SMOTE 0.1980 0.1053 0.3026 0.5595

using the well known non-convex optimization technique

based on difference-of-convex programming. We used the

implementation provided by [35]
8

• pAUCBooost [25]: A boosting based algorithm that opti-

mizes partial AUC in the general false positive ranges of the

form [𝛼, 𝛽].
• GreedyHeuristic [46]: An entension of the greedy heuris-

tics method in [46] that maximizes pAUC by means of linear

combination of classifiers.

For the binary classification experiments, we optimize for pAUC.

We use 75% of the data for training and the remaining 25% for test-

ing. We evaluate the performance of the various models by com-

paring the pAUC in the FPR range [0.02, 0.05].

7 RESULTS
In this section, we present the results of our experiments. We start

by looking at the usefulness of the vector embeddings from learned

decision tree paths. We then evaluate the efficacy of the proposed

method for optimizing partial AUC. In particular, we compare the

performance of our method with other state-of-the art baseline

models, firstly, for the task of learning to rank and then examine

the generalizability of the proposed model by looking at binary

classification tasks in several domains where class imbalance is a

prominent issue. Additionally, we perform a run time analysis to

compare the proposed method with other baseline models.

7.1 Usefulness of decision tree features
In Section 4, we introduced the novel use of learned decision tree

paths as vector embeddings to capture any inherent non-linearity in

data to overcome the limitation of the method only learning linear

separators. We empirically examine those claims in this section. We

consider the following variations of the dataset:

• Raw data - This is the original dataset as is.

• Concatenated data - For this dataset, we first derive the

vector embeddings using the learned decision tree paths and

append it to each of the raw data samples.

• SMOTE data - This dataset is formed by upsampling the

minority (positive) class samples using SMOTE [9]. We use

SMOTE to ensure that the positive samples are not simply

duplicated and have some variations in the features.

8
http://clweb.csa.iisc.ac.in/harikrishna/Papers/SVMpAUC-tight/

Handling Class Imbalance with POISE: pAUC Optimization in Supervised Experiments Conference’17, July 2017, Washington, DC, USA

Table 3: pAUC maximization in [0.0, 0.1] on LETOR datasets

MQ2007 MQ2008
Approach pAUC[0,0.1] pAUC[0,1] = AUC pAUC[0,0.1] pAUC[0,1] = AUC

pAUC Δ pAUC AUC Δ AUC pAUC Δ pAUC AUC Δ AUC
pAUCmax on concatenated data 0.1381 0.0 0.6562 0.0 0.2291 0.0 0.7826 0.0

AUCmax on concatenated data 0.1017 + 0.0364 0.6137 + 0.0425 0.2079 0.0212 0.7349 + 0.0477

AUCmax on raw data 0.0932 + 0.0449 0.6121 + 0.0441 0.1731 0.0560 0.7175 + 0.0651

LambdaMART 0.0774 + 0.0607 0.6085 + 0.0477 0.1440 0.0851 0.6925 + 0.0901

RankSVM* - - - - 0.0499 0.1792 0.4998 + 0.2828

Table 4: Comparing the ranking performance using NDCG@k on LETOR datasets

Approach MQ2007 MQ2008
NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

pAUCmax on

concatenated data 0.3461 0.4018 0.4519 0.4861 0.3141 0.3839 0.4415 0.4813
LambdaMART 0.3397 0.3882 0.4422 0.4798 0.3075 0.3599 0.4087 0.4628

To compare the performance of the various dataset types, we

train and test the AUC Maximization algorithm (described in Sec-

tion 3) with each one of the three dataset types for all the UCI

datasets. Table 2 summarizes the resulting pAUC in the FPR in-

terval [0.02, 0.05], computed over the test data, as obtained by the

AUC Maximization algorithm for the different datasets types. It is

evident from the numbers that the non-linearity introduced by the

vector embeddings derived from the learned decision tree paths

significantly helps improve the performance of the AUC maximiza-

tion algorithm, even outperforming the SMOTE upsampled data,

which is a common strategy employed by several people to over-

come class imbalance.

7.2 Learning to Rank
In this section, we analyse the results of our experiments comparing

the performance of our proposed model (pAUCmax) with other

state of the art baseline models for maximising pAUC in the [0, 𝛼]
range on the two supervised learning to rank datasets from LETOR

4.0, namely, MQ2007 and MQ2008. We report the pAUC scores in

the FPR range [0.0, 0.1] and [0, 1] (corresponding to AUC) on the

held-out test sets in Table 3. We also include the Δ pAUC and Δ
AUC scores which corresponds to the difference in performance of

our proposed model (pAUCmax) on the concatenated data with the

baseline models. *Note that we do not report the score for RankSVM

onMQ2007 as the model ran into a memory error and failed to train.

A comparison of AUCmax on raw data and the concatenated

reemphasises the usefulness of the embeddings derived from the

learned decision tree paths and show that the non-linearity intro-

duced aids in maximizing the pAUC[0, 0.1] and AUC scores. We

did not find the results from RankSVM useful as it performs poorly

on both the datasets. While LambdaMART outperforms RankSVM

by a large margin, we observe that our proposed model (pAUCmax)

with the concatenated data has a significant improvement from the

baseline models for both pAUC[0.0, 0.1] (improvement rate: +6%
for MQ2007 and +8.5% for MQ2008) and the overall AUC (improve-

ment rate: +4.7% for MQ2007 and +9% for MQ2008). This shows

that our proposed method outperforms state of the art models for

learning to rank with imbalanced classes.

Additionally, we compare the performance of the proposedmodel

with LambdaMART on the two LETOR 4.0 datasets using NDCG@k,

a common evaluation metric using in learning to ranking. We do

not report the scores for RankSVM due to it’s poor performance.

Table 4 summarizes the NDCG@k for k values 1, 3, 5 and 10. We

see a 0.6% to 4% improvement in scores, therefore the performance

of the proposed model is comparable to that of LambdaMART.

7.3 Binary Classification
In our final set of experiments conducted, we look at the generaliz-

abilty of the proposed method (pAUCmax) for binary classification

problems having class imbalance where we maximize the pAUC

in the more generic [𝛼, 𝛽] range. We compare the performance of

pAUCmax with other state of the art baseline models for optimiz-

ing pAUC on a number of benchmark UCI datasets and report the

pAUC scores for the FPR range [0.02, 0.05] on the held-out test sets

in Table 5. We also include the Δ pAUC to highlight the difference

in performance of pAUCmax on the concatenated data with each of

the baseline models.

Upon analysing the numbers, we see that using the pAUC maxi-

mization algorithm on the concatenated data outperforms all of the

state of the art baseline methods with significant improvements in

results across all datasets. While the difference in performance on

the a9a dataset, ranging from +0.36% to +16.35%, was not as promi-

nent, we observe a huge leap in performance on the letter_img

dataset, ranging from +44.40% to +67.60%. We also observe substan-

tial increase in performance on covtype and ijcnn1 ranging from

+15.80% to +36.79% and +8.43% to +64.40% respectively. This shows

that our proposed method can also be applied to general binary

classification problems having imbalanced classes and has signifi-

cant improvement over existing state of the art baseline models.

Conference’17, July 2017, Washington, DC, USA Nikitha Rao and Sreangsu Acharyya

Table 5: pAUC maximization in [0.02, 0.05] on UCI datasets

pAUC(0.02, 0.05)
Approach a9a covtype ijcnn1 letter_img

pAUC Δ pAUC pAUC Δ pAUC pAUC Δ pAUC pAUC Δ pAUC
pAUCmax on concatenated data 0.4374 0.0 0.6065 0.0 0.7641 0.0 0.9648 0.0

AUCmax on concatenated data 0.3978 + 0.0396 0.5751 + 0.0314 0.7206 + 0.0435 0.9276 + 0.0372

AUCmax on raw data 0.2828 + 0.1546 0.4354 + 0.1711 0.4742 + 0.2899 0.9063 + 0.0585

AUCmax on smote data 0.1980 + 0.2394 0.1053 + 0.5012 0.3026 + 0.4615 0.5595 + 0.4053

SVMAUC 0.4338 + 0.0036 0.2987 + 0.3078 0.4750 + 0.2891 0.4455 + 0.5193

SVMpAUC 0.2739 + 0.1635 0.2467 + 0.3598 0.6131 + 0.1510 0.5208 + 0.4440

𝑆𝑉𝑀𝑑𝑐
𝑝𝐴𝑈𝐶

0.3650 + 0.0724 0.2410 + 0.3655 0.6798 + 0.0843 0.5182 + 0.4466

pAUCBooost 0.4012 + 0.0362 0.4485 + 0.1580 0.4913 + 0.2728 0.4954 + 0.4694

GreedyHeuristic 0.3417 + 0.0957 0.2386 + 0.3679 0.1201 + 0.6440 0.2888 + 0.6760

Table 6: Training time in seconds (relative to pAUCmax)

Approach MQ2007 MQ2008
pAUCmax on concatenated data 907.52 (t) 561.56 (t)

LambdaMART 654.15 (0.72t) 397.81 (0.71t)

RankSVM* - 5098.12 (9.08t)

7.4 Run time analysis
We compare the running time of our proposed method with the

baseline models for the learning to rank problem. Table 6 summa-

rizes the both the absolute time taken in seconds and the relative

time taken by the baseline models as a factor of the time taken by

the proposed model. We observe that the running time of our model

is significantly better than RankSVM and is comparable to that of

LambdaMART. *Note that we do not report the score for RankSVM

onMQ2007 as themodel ran into amemory error and failed to train.

8 DISCUSSION
There are a number of implications of this work. Firstly, the novel

use of learned decision tree paths as vector embeddings to intro-

duce non-linearity has been empirically proven to improve the per-

formance of the AUC and pAUC maximization models. These task-

specific embeddings can be combined with potentially any method

that only learns a linear separator, thereby extending the method to

datasets that are not linearly separable. Secondly, class imbalance is

a promiment issue in a number of real world applications, our pro-

posedmethod is generalizable and can be applied to problems in any

domain where the goal is to optimize the pAUC in a given FPR range.

Although we have presented our work in terms of the hinge loss

surrogate function, it is straightforward to extend the technique

to other such functions, for example, logistic loss, exponential loss

[45], etc. It is recommended to use surrogates functions that are

proper scoring rules [45].

One current limitation of the approach is the restriction to the

binary class problem. It would be fruitful to conside how to apply

these techniques to the partial variants of generalizations of AUC

to multiple classes [17, 24]

9 CONCLUSION
Given the increasing popularity in the usage of pAUC, as an im-

provement over AUC, for evaluating the performance of models in

class imbalanced scenarios. We propose an algorithm for optimiz-

ing the pAUC in the FPR range [0, 𝛼] by formulating the minimiza-

tion of pAUC loss as a two person zero-sum game between (i) an

adversary that selects a fixed fraction of negative examples and (ii)

a scoring function that needs to assign positive examples higher

scores, no matter the choice of the adversary. The optimal scoring

function is obtained as an equilibrium of this game. We eliminate

the restriction to linear separators with the use of an efficient, task

specific vector embedding technique that captures the geometry in-

duced by decision trees, thereby extending the method to datasets

that are not linearly separable.

We evaluate both the usefulness of the vector embeddings as

well as the efficacy of the proposed method for optimizing partial

AUC. More specifically, we compare the performance of our method

with other state-of-the art baseline models, firstly, for the task

of learning to rank and then examine the generalizability of the

proposed model by looking at binary classification tasks in several

domains where class imbalance is a prominent issue. The empirical

results indicate that the proposed method does in fact optimize the

partial AUC in the desired false positive range, outperforming the

existing baseline techniques by a significant margin.

REFERENCES
[1] Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, and Dan Roth.

2005. Generalization bounds for the area under the ROC curve. Journal of
Machine Learning Research 6 (21 July 2005).

[2] B.C. Arnold, N. Balakrishnan, and H.N. Nagaraja. 2008. A First Course in Order
Statistics. Society for Industrial and Applied Mathematics.

[3] Kaan Ataman,WNick Street, and Yi Zhang. 2006. Learning to rank bymaximizing

AUC with linear programming. In The 2006 IEEE International Joint Conference
on Neural Network Proceedings. IEEE, 123–129.

[4] Mohamed Bekkar, Hassiba Kheliouane Djemaa, and Taklit Akrouf Alitouche.

2013. Evaluation measures for models assessment over imbalanced data sets. J
Inf Eng Appl 3, 10 (2013).

[5] Andrew P. Bradley. 1997. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern Recognition 30, 7 (1997), 1145

– 1159. https://doi.org/10.1016/S0031-3203(96)00142-2

[6] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

https://doi.org/10.1016/S0031-3203(96)00142-2

Handling Class Imbalance with POISE: pAUC Optimization in Supervised Experiments Conference’17, July 2017, Washington, DC, USA

[8] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected

reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference
on Information and knowledge management. 621–630.

[9] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[10] Chih chung Chang and Chih-Jen Lin. 2001. IJCNN 2001 Challenge: Generalization

Ability and Text Decoding. In In Proceedings of IJCNN. IEEE. 1031–1036.
[11] Corinna Cortes and Mehryar Mohri. 2004. AUC optimization vs. Error rate mini-

mization. In Advances in Neural Information Processing Systems 16 - Proceedings
of the 2003 Conference, NIPS 2003 (Advances in Neural Information Processing Sys-
tems). Neural information processing systems foundation.

[12] Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, and Yoelle Maarek. 2016.

You’ve Got Mail, and Here is What You Could Do With It! Analyzing and Predict-

ing Actions on Email Messages. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining (WSDM ’16). 307–316.

[13] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[14] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient

boosting algorithm for combining preferences. Journal of machine learning
research 4, Nov (2003), 933–969.

[15] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.
[16] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. 2010.

Social media recommendation based on people and tags. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. 194–201.

[17] D.J. Hand and R.J. Till. 2001. A Simple Generalisation of the Area Under the ROC

Curve for Multiple Class Classification Problems. Machine Learning 45 (2001),

171–186.

[18] Irit Hochberg, Deeb Daoud, Naim Shehadeh, and Elad Yom-Tov. 2019. Can

internet search engine queries be used to diagnose diabetes? Analysis of archival

search data. Acta diabetologica 56, 10 (2019), 1149–1154.
[19] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. 2008. Kernel

methods in machine learning. The annals of statistics (2008), 1171–1220.
[20] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[21] Jonathan L Jesneck, Loren W Nolte, Jay A Baker, Carey E Floyd, and Joseph Y Lo.

2006. Optimized approach to decision fusion of heterogeneous data for breast

cancer diagnosis. Medical physics 33, 8 (2006), 2945–2954.
[22] Thorsten Joachims. 2005. A Support Vector Method for Multivariate Performance

Measures. In Proceedings of the 22nd International Conference on Machine Learning
(ICML ’05). Association for Computing Machinery, New York, NY, USA, 377–384.

[23] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. 217–226.

[24] Ross Kleiman and David Page. 2019. AUCµ: A PerformanceMetric for Multi-Class

Machine Learning Models. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Vol. 97. 3439–3447.

[25] O. Komori and S. Eguchi. 2010. A boosting method for maximizing the partial

area under the ROC curve. BMC bioinformatics (2010). https://doi.org/10.1186/

1471-2105-11-314

[26] Ping Li, Qiang Wu, and Christopher J Burges. 2008. Mcrank: Learning to rank

using multiple classification and gradient boosting. In Advances in neural infor-
mation processing systems. 897–904.

[27] Charles X Ling, Jin Huang, and Harry Zhang. 2003. AUC: a better measure than

accuracy in comparing learning algorithms. In Conference of the canadian society
for computational studies of intelligence. Springer, 329–341.

[28] Charles X. Ling, Jin Huang, and Harry Zhang. 2003. AUC: A Statistically Con-

sistent and More Discriminating Measure than Accuracy. In Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI’03). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 519–524.

[29] Bin Liu and Yulin Zhu. 2019. ProtDec-LTR3. 0: protein remote homology detection

by incorporating profile-based features into Learning to Rank. Ieee Access 7
(2019), 102499–102507.

[30] Qiaoling Liu and Eugene Agichtein. 2011. Modeling answerer behavior in col-

laborative question answering systems. In European Conference on Information
Retrieval. Springer, 67–79.

[31] Tie-Yan Liu. 2011. Learning to rank for information retrieval. Springer Science &
Business Media.

[32] Claudio Marrocco, Robert PW Duin, and Francesco Tortorella. 2008. Maximizing

the area under the ROC curve by pairwise feature combination. Pattern Recogni-
tion 41, 6 (2008), 1961–1974.

[33] Taesup Moon, Alex Smola, Yi Chang, and Zhaohui Zheng. 2010. IntervalRank:

isotonic regression with listwise and pairwise constraints. In Proceedings of the
third ACM international conference on Web search and data mining. 151–160.

[34] Harikrishna Narasimhan and Shivani Agarwal. 2013. A Structural SVM Based

Approach for Optimizing Partial AUC. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013
(JMLR Workshop and Conference Proceedings), Vol. 28. JMLR.org, 516–524.

[35] H. Narasimhan and S. Agarwal. 2016. Support Vector Algorithms for Optimizing

the Partial Area Under the ROC Curve. Neural Computation 29 (2016).

[36] Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples

for code search engines. Empirical Software Engineering 22, 1 (2017), 259–291.

[37] Shuzi Niu, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2012. Top-k Learning to

Rank: Labeling, Ranking and Evaluation.

[38] Matthew Norton and Stan Uryasev. 2019. Maximization of AUC and Buffered

AUC in Binary Classification. Math. Program. 174, 1–2 (March 2019), 575–612.

https://doi.org/10.1007/s10107-018-1312-2

[39] Komori O and Eguchi S. 2010. A boosting method for maximizing the partial

area under the ROC curve. BMC Bioinformatics (2010). https://doi.org/10.1186/

1471-2105-11-314

[40] Daan Odijk and Anne Schuth. 2017. Online learning to rank for recommender

systems. In Proceedings of the Eleventh ACM Conference on Recommender Systems.
348–348.

[41] S. Paisitkriangkrai, C. Shen, and A. Van Den Hengel. 2013. Efficient pedestrian

detection by directly optimizing the partial area under the ROC curve. In Pro-
ceedings of the IEEE International Conference on Computer Vision. 1057–1064.

[42] Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. 2006. Evaluation of

different biological data and computational classification methods for use in

protein interaction prediction. Proteins: Structure, Function, and Bioinformatics
63, 3 (2006), 490–500. https://doi.org/10.1002/prot.20865

[43] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets.

arXiv:cs.IR/1306.2597

[44] Dimitrios Rafailidis and Fabio Crestani. 2017. Learning to rank with trust and

distrust in recommender systems. In Proceedings of the Eleventh ACM Conference
on Recommender Systems. 5–13.

[45] Mark D. Reid and Robert C. Williamson. 2011. Information, Divergence and Risk

for Binary Experiments. Journal of Machine Learning Research 12, 22 (2011), 731–

817.

[46] Maria Teresa Ricamato and Francesco Tortorella. 2011. Partial AUCMaximization

in a Linear Combination of Dichotomizers. Pattern Recogn. 44, 10–11 (Oct. 2011),
2669–2677. https://doi.org/10.1016/j.patcog.2011.03.022

[47] R. Tyrrell Rockafellar. 1970. Convex analysis. Princeton University Press, Prince-

ton, N. J.

[48] Xiaoqing Ru, Lida Wang, Lihong Li, Hui Ding, Xiucai Ye, and Quan Zou. 2020.

Exploration of the correlation between GPCRs and drugs based on a learning to

rank algorithm. Computers in Biology and Medicine 119 (2020), 103660.
[49] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-

based collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web. 285–295.

[50] David Sculley. 2010. Combined regression and ranking. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining.
979–988.

[51] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pe-

gasos: Primal estimated sub-gradient solver for svm. Mathematical programming
127, 1 (2011), 3–30.

[52] Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-wise learning to rank with

matrix factorization for collaborative filtering. In Proceedings of the fourth ACM
conference on Recommender systems. 269–272.

[53] Zhendong Shi, Jacky Keung, Kwabena Ebo Bennin, and Xingjun Zhang. 2018.

Comparing learning to rank techniques in hybrid bug localization. Applied Soft
Computing 62 (2018), 636–648.

[54] Johan AK Suykens and Joos Vandewalle. 1999. Least squares support vector

machine classifiers. Neural processing letters 9, 3 (1999), 293–300.
[55] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large Margin

Methods for Structured and Interdependent Output Variables. Journal of Machine
Learning Research 6 (Sept. 2005), 1453–1484.

[56] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[57] X Wang, M Bendersky, D Metzler, and M Najork. 2016. Learning to rank with

selection bias in personal search. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval. 115–124.

[58] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.

Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254–270.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1186/1471-2105-11-314
https://doi.org/10.1186/1471-2105-11-314
https://doi.org/10.1007/s10107-018-1312-2
https://doi.org/10.1186/1471-2105-11-314
https://doi.org/10.1186/1471-2105-11-314
https://doi.org/10.1002/prot.20865
http://arxiv.org/abs/cs.IR/1306.2597
https://doi.org/10.1016/j.patcog.2011.03.022

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 pAUC maximization

	3 Pairwise Formulation for AUC
	4 Using non-linear features
	4.1 Vector embedding using decision tree
	4.2 Learning the decision tree

	5 Partial AUC Formulation
	5.1 Sampling

	6 Experimental Setup
	6.1 Datasets
	6.2 Models

	7 Results
	7.1 Usefulness of decision tree features
	7.2 Learning to Rank
	7.3 Binary Classification
	7.4 Run time analysis

	8 Discussion
	9 Conclusion
	References

